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ABSTRACT

The interaction of a satellite with the ionosphere is
studied by solving numerically the Poisson-Vlasov system of
equations. The self-consistent electric field is obtained
by means of an iteration technique which cycles between the
ion density and potential calculations. The current-voltage
characteristics are computed as functions of satellite velo-
city, ion mass, electron temperature, and satellite shape
and size, The size of the satellite studied varies over a
range extending from 0.2 to 25 Debye lengths, The floating
potential and the plasma drag of the satellite are obtained.
In addition, the angular distribution of the ion current to
a cylindrical satellite is obtained. The detailed structure
of the wake is investigated. In particular, the wake length
and ion focusing in the wake are studied. The satellite in-
teraction with the ionosphere is examined without the effect
of an ambient magnetic field. This interaction is then re-
studied by considering the inclusion of a uniform magnetic
field. It is shown that a magnetic field oriented parallel
to the flow velocity has a much greater influence on the sub-
sequent motion of the ions in the wake than a field of equal

magnitude oriented perpendicular to the flow velocity.
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CHAPTER I: INTRODUCTION

A, Properties of the Interaction of a

Satellite with the Ionosphere

l. Statement of the Problem

The launching of artificial satellites into the earth's
ionosphere has created interest in the problem of predicting
the interaction of a moving body with the ionospheric plasma.
When interparticle collisions are negligible, the steady flow
of the plasma around the body is described by the Poisson-
Vlasov system of equations. Poisson's equation relates the
electric field to the net charge density of the disturbed
plasma, and the Vlasov equation describes the distribution
functions of the charged particles in an electromagnetic
force field. These equations constitute a nonlinear integro-
differential system which is of sufficient complexity to re-

guire a numerical rather than an analytical solution.

2. Environmental Data of the Ionosphere

The validity of the Poisson-Vlasov system of equations
in the ionosphere is based on the properties of the iono~
spheric plasma. In Table I the reference data for the iono~
sphere are presented for altitudes ranging from 300 to 3000
km above the surface of the earth. The data are primarily

(1) (2)

obtained from Johnson and Al'pert et al. ‘with some

3,4

modifications taken from more recent papers.( )
The ionospheric data in the table vary considerably

with position and time. The charged particle density, the

ion temperature, and the relative importance of the ion
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species undergo variations which are functions of not only
altitude but also latitude, time of day, time of year, and
even the ll-year solar cycle (i.e., a variation in the sun-
spot intensity). Therefore, the data in the table are mean

values only.

Density of charged particles. The ionosphere contains

both neutral and ionized atoms, and their densities decrease
with increasing altitude. However, since the neutral par-
ticle density decreases much more rapidly than the charged
particle density (due to the larger amount of ionizing ra-
diation at higher altitudes), the influence of the charged
particles upon a satellite is dominant at altitudes above
1000 km. Even at lower altitudes of the ionosphere, the
charged particle density is sufficiently large to interact
with the moving satellite. In this thesis, therefore, the
investigation will be limited to the interaction of the
satellite with the charged particles of the ionosphere since

(5)

the interaction with neutral particles is well known.

Influence of electron-ion collisions. In the iono-

sphere (see Table I) the electron-ion mean free path is much
longer than the satellite length. As a result, the plasma
flow near the satellite is considered to be collisionless, '
and the collisional term on the right-hand side of the Boltz-
mann equation may be neglected. The resulting Vlasov equa-
tion describes the behavior of the electrons and ions near
the satellite. 1In the far wake, which is located many body
lengths downstream and is comparable in length to the elec-
tron-ion collision length, collisional effects must be con-

sidered. For example, the collision term of the Boltzmann



(6)

equation may be approximated by the Krook model. This
thesis, however, will be concerned only with that region
in which the distance from the satellite is much less than
any collision length. This region is sufficiently large
to include most of the phenomena arising from the electro-

magnetic interaction of the satellite with the plasma.

Electrxron density. 1In the ionosphere, the electrons

and ions have approximately the same temperature (i.e., Te=

Ti)’ Although this temperature can vary by more than one
hundred percent, generally it is not less than 1000°K, Then
the electron thermal speed defined as Voo™ (kTe/me)”5 is not
less than 1.2 X 105 m/sec. The satellite velocity for a
stationary orbit depends only upon the altitude; it ranges
from 6500 to 7700 m/sec at altitudes of 3000 and 300 km,
respectively. Hence, the thermal speeds of electrons are
an order of magnitude greater than the satellite speed,

and the velocity of the satellite is negligible when com-
pared to the electron thermal speed (see Table II). Con-
sequently, the electrons are assumed to have no net motion
relative to the satellite, and the electron distribution
function remains a stationary Maxwellian in the satellite
frame of reference. Furthermore, the satellite body gener-
ally has a negative potential, and the body intercepts and
absorbs relatively few electrons. In this case, the elec-

tron density is given by the Boltzmann factor as a local

function of the potential V:

n, = n, exp (eV/kT ).

e (1.1)
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Influence of ion thermal motion of wake length. Table II

indicates that the thermal speed of the ions of the ionospheric
plasma is much less than that of the electrons. In fact, the
ion thermal speed is less than the satellite speed. Since
the moving satellite sweeps up the ions directly in front of
it, the ion density of the immediate wake is much less than
the ambient density. Further downstream, the ions fill in
the wake because of their thermal motion. Let the radius of
at’ the satellite v:locity
and the most probable ion speed Vpi= (2kTe/mi) . Then

the satellite cross section be Rs

v
sat’

an ion which travels with the most probable speed and with
velocity directed toward the wake will intersect the center

line of the wake at a distance d downstream of the
thermal

satellite., This distance,

2 i

/ (mivsat/ZkTe)

dthermal= Rsatvsat Vpi= Rsat

s

(1.2)
can be considered the approximate length of the ion-free near

(2)

wake., Since the ion speed is less than the satellite speed,

this length is several times greater than the satellite radius.

Influence of electric field on wake length. In the dis-

turbed wake, the electron and ion densities are not equal,
and the resulting net charge density generates an electric
field which may be calculated by means of Poisson's equation.
The energy density of the electric field in the ion-free near
wake is of the same order of magnitude as the electron pres-
sure nekTe since the field, compensating the lack of ions,

prevents all but the most energetic electrons from entering



the wake. Since the field repels electrons, it attracts
ions into the wake and assists the filling-in process.

If the influence of the electric field on the ion motion
is neglected, then the ion density may be obtained.by the

(5) When these

well-known methods of rarefied gas dynamics.
values of the ion density are inserted into Poisson's equa-
tion (the electron density being given by the Boltzmann fac-
tor), the electric field in the disturbed region may be cal-
culated.(7'8)
This calculated field, however, is not the actual field.
The error may be estimated by comparing the length of the ion-
free wake with and without the electric field. 1In Chap. III
where the ion thermal energy is neglected, the ion-free wake

length is approximately

x5 K

(mivsat/sze) !

%

where the Debye length is XD = (eokTe/nez) . In the case

dwake/xDa 2 (Rsat/)‘D)

of satellites with radii greater than the Debye length, the
wake length with electric field is shorter than that without
field [estimated above in Eq. (1.2)]. Hence, in certain cases
the influence of the field on the ions is more important than
the ion thermal motion.

Influence of satellite potential on plasma flow. The

electric field which is due to the satellite potential has
great influence on certain quantities such as the ion current
and drag of a satellite. The potential acquired by a satel-
lite as a result of the unequal electron and ion fluxes is

negative and has been estimated to be two to four times the



(2,9)

electron thermal energy. When the satellite potential
is taken into account, the ion current collected may be 20%
more than the swept-up current. A similar increase occurs
in the satellite drag.

In certain cases, the influence of the satellite poten-
tial on the ion flow is of primary importance. For example,
if a long thin antenna is moving perpendicular to the magnetic
field of the earth, the induced potential gradient can cause
the potential at one end of the antenna to be many times great-

(10)

er than the electron thermal energy. Another example is
a Langmuir probe situated on a satellite. In this case the
probe may be biased to a highly negative potential relative
to the main satellite in order to obtain information about

the ionic medium.(ll)

If the probe is located sufficiently
far from the satellite, it can be considered as a small satel-
lite independent of its larger neighbor. 1In this case, the
exact ion current to the probe at high negative potentials is
of importance to the experiment. In fact, the detailed flow
of the ions about the main satellite is important for the de-

termination of the plasma flow to the probe,

Relation of Debye length to size of disturbed region.

In order to estimate the distance over which the electric

field (arising from thé potential of both wake and satellite)
will disturb the ionized medium, the Debye length of the plasma
must be compared with the length of the body. 1In Table II,
ratios of satellite radius to Debye length are shown for a
satellite of 0.5 m radius (such as Explorer 20) and for an
antenna of 1 cm radius. Note that the ratios vary widely.from

0.3 to greater than 100,



For the antenna, the body size is comparable to the
Debye length, Hence, the electric field disturbs the ion
and electron distributions within several body radii of the
antenna., Furthermore, any change in the satellite para-
meters will have a strong effect on the current, drag, and
wake development.

In the case where the satellite radius is much larger
than the Debye length, the electric field is shielded from
the plasma within a distance which is a small fraction of
the body radius, at least in front of and to the side of
the body where the ion charge density is near its ambient
value, In the wake, however, the length of the ion-free
region is proportional to the one-half power of the ratio of
satellite radius to the Debye length. Hence, the wake, sever-
al times larger than the body size, can be many times larger
than the Debye length. Nevertheless, the development of the
large wake of the satellite is very dependent on the electric
field. In both cases, then, the influence of the electric

field on the ion-flow field must be taken into account.

Influence of magnetic field on particle motion. 1In the

above discussion, the influence of the geomagnetic field on

the particle motion has not been considered. As shown in

Table II, the ratio of the Debye length to the electron gyro-
radius in the geomagnetic field is of the order of unity
throughout the ionosphere. Thus, the magnetic field influences
significantly the electron trajectoriés. However, since the
electrons maintain their Maxwellian distribution in the mag-

netic field, the influence of the field on the electron



density may be neglected. Hence, the electron density is
given by the Boltzmann factor in Eq.. (l,l)i(;z)

Table II also indicates that the ratio of the Debye
length to the ion gyroradius is very small. Therefore,
the geomagnetic field is important only when the region of
interest is very much larger than the Debye length (e.g., the
far wake). Furthermore, when a magnetic field is oriented
parallel to the satellite velocity (e.g., in the case of a
polar-orbiting satellite located at the magnetic equator),
the motion of the ions moving to fill in the ion-free wake
is retarded. As a result, the wake is lengthened and may
contain spatial variations which correspond to the rotation

(6)

of ions about the lines of magnetic force.

10



B. Review of Prior Work

As a first approximation to the solution of the flow
of the ionospheric gas around a satellite, the ion component
of the plasma is assumed to behave as a free-molecular (col-
lisionless) gas consisting of neutral particles. The electric
and magnetic properties of the plasma are entirely ignored,
and the problem becomes identical to that of an object moving

through a rarified gas. Schaaf and Chambré >

have reviewed
analytical results obtained for symmetric body shapes (flat
plate, cylinder, and sphere) in free-molecular flow and have
presented data on the drag force and the drag coefficient as
a function of Mach. number and surface accommodation coeffi-

(2)

cient, Furthermore, Alpert et al. solved the particle

flow around any arbitrarily shaped body by making use of the

fact that the ionospheric flow around satellites is hypersonic,
i.e., the Mach number is much larger than unity. Instead of
calculating the drag coefficient, Alpert et al. presented con-
tour plots of particle density around the satellite. Their
results showed that the particle density was strongly dis-
turbed in the satellite wake up to a distance d=(mivs§t/2kTe)%x
Rsat downstream of the satellite, where Rsat is the effective
radius of the maximum cross section of the satellite, 1In ad-
dition, the particle density in the region in front of and
along the sides of the satellite was quite similar to the am-
bient particle density. The study also showed that neither
the exact shape nor the length of the satellite in the flow
direction is important in the process of filling in the wake;
the cross-sectional area of the satellite controls this pro-

cess,.

11



The approximation which assumes that the flowing par-
ticles are acting freely can be made more realistic by
treating the particles as ions which interact. with the

(2)

earth's magnetic field. Alpert et al. assumed a uni-
form magnetic field but continued to neglect the electric
field. 1In this case, their plots of ion density show that
a magnetic field parallel to the flow velocity will prevent
the ion density from attaining its ambient value for an in-
finitely long distance downstream of the satellite. 1In
reality, collisions or plasma instabilities will provide
the mechanism which restores the ion density in the wake to
its ambient value., On the other hand, a magnetic field per-
pendicular to the flow velocity has only a moderate influence
on the ion density in the wake. Here, the filling-in pro-
cess 1s similar to that without magnetic field.

The case of a conducting satellite moving perpendicu-
larly to a magnetic field was treated by several investiga~
tors. By neglecting the influence of the magnetic field on

(13)

the ions, Beard and Johnson determined the potential
gradient induced on a long thin satellite. The results in-
cluded the distribution of current along the length of the
body and the determination of the induction drag resulting
from the interaction of the current with the magnetic field.

(14)

Other investigators determined the portion of the satel-
lite drag which is due to the generation of Alfvén waves.
Furthermore, as a result of various estimates of either the
potential field or the ion density, several other investi-

gators(ls—l7) obtained the joint effect of the electric and

12



magnetic fields on the plasma flow around a spherical satel-
lite. However, in these cases, the obtained electric fields
were not self-consistent.

(18)

In 1962 Davis and Harris analyzed the case where
the ions and electrons of the plasma interact with a self-
consistent electric field. They assumed the effect of the
earth's magnetic field to be negligible and, moreover, the
satellite potential to be sufficiently negative to insure
that the electron density is given by the Boltzmann factor,
i,e., n= n_exp o, wherxe o = eV/kTe. In order to obtain the
total charge density, the ion temperature was assumed to be
zero, and the ion density was calculated by means of the
equation of continuity. The region was divided into finite
elements and therefore Poisson's equation could be ap-
proximated with a set of coupled algebraic equations. The
self-consistent electric field was obtained by cycling be-
tween Poisson's equation and the equation of continuity for
the ions. However, since the region of interest was very
large compared to the Debye length, the accuracy of their
results of the computation of the potential was severely
limited. Nevertheless, these investigators were able to
verify numerically what had been anticipated from physical
arguments, namely, that the charge demsity is positive in
front of the satellite and, for the most part, negative in
the wake. In addition, it was discovered that downstream

in the wake, considerable ion focusing occurs; this ion
focusing is a result of the electric field and, in some cases,
can give rise to net positive charge densities on the axis of

the normally negative wake. The wake is not limited in length

13



to the order of a Debye length; actually, it extends many
Debye lengths downstream., Of course, in front and at
the sides of the satellite, the plasma is disturbed over a
distance no longer than a few Debye lengths.

In 1964 Lam and Greenblatt(lg'zo) devised a technique
for solving the flow of the ionospheric plasma around a
satellite which is considerably larger than a Debye length.
Rather than make use of the finite-difference method employed
by Davis and Harris and others, Lam and Greenblatt treated
the ion flow as a continuous fluid and obtained a scalar ve-
locity potential which describes the flow in all regions ex-
cept in the vicinity of the sheath. However, for a body
size which is large compared with the Debye length, the sheath
is very thin and follows the shape of the body closely. As
a result, Lam and Greenblatt assumed that ion flow at the
sheath edge approximates the ion flow at the body edge. They
presented plots of data which show ion flow velocity vs. po-
sition on the body edge and ion current density at the sheath
edge vs. body size. It sould be emphasized that these plots
cover only the front of very large satellites. The technique
of Lam and Greenblatt cannot be extended into the wake be-
cause the (collisionless) ion flow there is not adequately
described by their system of equations.

In 1964 Maslennikov and Sigov(21"23)

attacked the prob-
lem in much the same manner as Davis and Harris. They made
approximately the same assumptions concerning the problem;
however, they chose a body size comparable to a Debye length--

this important computational difference permitted them to

14



obtain numerical solutions which were much more accurate
than those of previous investigators. It should also be
noted that Maslennikov and Sigov determined the ion charge
density by means of the "super-particle" technique--many
ion trajectories are followed simultaneously, and the ion
charge density at any given point is assumed proportional
both to the number of ions passing through a small volume
cell surrounding the given point and to the length of time
during which each ion remains in the particular cell. This
method is similar to the "particle-in-cell" technique used
by some investigators (e,g., Refs., 24 and 25) to determine
charge densities for time-dependent plasma problems with
one or more space dimensions,

Maslennikov and Sigov succeeded in obtaining reasonable
flow fields and potential distributions around small iono-
spheric satellites. Their work confirms the conclusions of
Davis and Harris that the net charge density is positive in
front of the satellite and generally negative in the wake.
In certain regions of the wake, high positive charge densities
occur as a result of ion focusing by the electric field.
These local maxima in the charge density occur in some cases
not only directly downstream of the satellite but also above
and below the axis of the wake. Maslennikov and Sigov also
showed that the size of the region perturbed by the electric
field, at least in the wake, is limited less by the Debye
length than by the Mach number of the ions and by the cross-
sectional area of the satellite., 1In addition, for the first

time it was predicted that a series of spatial oscillations

15



of the electric potential occurs in the wake. These po-
tential variations arise from the inertia of the streaming,
collisionless ions under the action of the electric field.
Moreover, it will be shown later in the present work that

an axially symmetric satellite (Maslennikov and Sigov's sole
choice of satellite shape) apparently is required for the
formation of such spatial oscillations, It should also be
mentioned that Maslennikov and Sigov extended their work to
the difficult parameter region where body size is considerably
less than Debye length and ion Mach number is slightly larger
than unity.

In 1966 parker (26:27)

solved numerically the problem of
a planar probe designed to Getermine ionospheric density and
energy when mounted flush with the surface of a satellite.
The satellite was assumed to be an infinite half-plane, The
electron density of the surrounding plasma was not restricted
to that given by the Boltzmann factor nor were the ions as-
sumed to have zero temperature. As a result, the model used
by Parker describes the motion of the ions and electrons much
more accurately than previous calculations. In order to ob-
tain the charge density, Parker evaluated the integral over
‘velocity space of the distribution function for each species
at each point of interest. The limits of velocity space which
are a function of the point of interest were obtained by sam=-
pling the whole of velocity space with a number of particle
trajectories. Those particles which reach the source of
plasma far away from the satellite surface contribute to

the charge density integral; those particles which return

to the probe or satellite surface or are trapped into quasi-

infinite orbits do not contribute. (Quasi-~infinite orbits

le



are those trajectoreis which remain in the neighborhood of
the satellite for an arbitrarily long time.) Therefore,
determination of the limits of velocity space at each spatial
point in the region of interest requires the evaluation of

a very large number of trajectories. Moreover, the failure
to assume the Boltzmann factor for electron density intro-
duces an additional computational difficulty into the problem
for the following reason: Since the satellite velocity is
much greater than the ion thermal velocity but much less than
the electron thermal velocity, ions possess--in addition to
their thermal energy--a kinetic energy relative to the satel-
lite which electrons do not possess. As a result, ion tra-
jectories are much less sensitive than electron trajectories
to errors in the electric field; therefore, the evaluation

of electron trajectories is much more difficult.

Parker succeeded in obtaining a current-voltage charac-
teristic for the planar probe and the net charge distribution
near the surface of the satellite. Even more important, he
contributed to the understanding of the computational prob-
lems which arise when the assumptions of zero ion temperature
and of the Boltzmann factor for electron density are relaxed,

In 1967 Taylor(28’29) in a manner similar to Parker,
solved the problem of an infinitely long satellite with a
rectangular cross section. He assumed the electron density
to be given by the Boltzmann factor and the ions to have a
finite temperature and to fill in the wake as if they were
neutral particles which would not interact with the electric
field. Using this assumption for the ion density, Taylor then

calculated the resulting potential around the satellite by a

17



finite-difference method. At a few points in the wake, the
ion density was recomputed allowing for the attractive effect
of electric field, 1In spite of the fact that these new ion

density values did not arise from a self-consistent electric

field, the results not only appeared to agree with much of

(18)

the previous work done by Davis and Harris and by Maslen-

(22)

nikov and Sigov but also contributed to the understanding
of the wake-filling mechanism. Specifically, Taylor showed
that the electric field attracts ions into the wake at a much
faster rate than would be expected if the transverse thermal
motion of the ions alone were considered, Moreover, the ion
density is greater on the axis of the wake than in the ad-
jacent region, This "hump" in the density splits into two
distinct wings which move away from the axis as the wake is
extended downstream., This behavior was also found in the solu-

tions of both Maslennikov and Sigov(zz) (2)

and Alpert et al.
Taylor suggests that such a region occurs because two thin
streams of ions are attracted into the wake (one from the

top edge and one from the bottom edge of the satellite); they
meet on the axis of symmetry and pass through each other en-
hancing the ion density at that point. After crossing, they

diverge and diffuse into the ambient plasma again.
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C. OQutline of Thesis

The works of Parker and of Taylor discussed previously
show :that although it is possible to include the effect of
both ion temperature and electric field in the numerical
calculations, this consideration is very costly in terms of
computer time. Furthermore, Alpert et al. showed that when
the ion temperature only is considered (the electric field
is neglected), the results, obviously, are insufficient to
explain and predict the interesting phenomena which are due
to the electric interaction. On the other hand, the work of
Maslennikov and Sigov indicates that coneideration of the
influence of the electric field on the ions (the ion tempera-
ture is neglected) allows the prediction of a variety of
phenomena both near to the satellite and in its wake.

Neglect of the ion temperature is valid as shown in
the sixth row of Table II giving the ratio of the ion kine-
tic energy to the electron thermal energy. Since the ions
and electrons have the same thermal energy, this ratio also
indicates the magnitude of the ion kinetic energy with respect
to its thermal energy. At all altitudes of the ionosphere,
this ratio is greater than unity; below 1500 km it is an oxrder
of magnitude greater than unity. Therefore, neglect of the
ion temperature is not expected to introduce serious error
into the results.,

Chapter II contains a detailed discussion of the method
of solution of the Poisson-Vlasov system of equations with
emphasis on the determination of the charge density of the
zero-temperature ion-flow field. The method is based upon

a concept of streamlines "borrowed" from continuum mechanics.
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Since the method #s both fast and accurate, the interaction
problem may be solved more easily than by other methods.
The speed of this method permits the investigation of much
larger regions of disturbance and a much greater variety of
conditions than was previously possible; the accuracy per-
mits the calculation of quantities such as ion current and
satellite drag and permits the detailed investigation of the
wake structure,

Chapter II also contains a thorough discussion of an
efficient solution of Poisson's equation. The method employed
here is a variant of the "alternating direction implicit" scheme

(30) The "fast

(31)

for solving five-diagonal matrix equations.

Fourier transform" method described by Cooley and Tukey and

(24)

used with success by investigators such as Hockney is not
applicable since in our case the boundary conditions are not
purely rectangular and the mesh spacing is not constant. In
summary, the goal of Chap. II is the development of a fast,
yet general solution for the equations of the problem.

It should be noted that a multiple ion composition is
not considered in Chap. II. Generally, the ionosphere con-
tains at least two and sometimes four species of ions (0t, Nt,
He*, and H'). 1In principle, the inclusion into the solution
of multiple ion species at different densities is not difficult,.
However, in the interest of simplification (which is consis-
tent with the objective of rapid computation), a single species
of ion (usually either He+ or O+) is assumed,

In Chap. III, the method of solution derived in Chap. II

is applied to satellites of various shapes and sizes in a
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variety of ionospheric conditions. The parameter space over
which the solution is valid is explored, and results are

(21) The total ion

compared with those of a previous work.
current to the satellite and its angular distribution over
a cylindrical surface are shown. The drag of the satellite
is obtained including that portion caused by ions which are
not intercepted by the satellite but are deflected by the
surrounding electric field. 1In the final section of the
chapter, the wake behavior is discussed; here different re-
gions of the wake are defined and their properties investi-
gated. The conditions under which spatial variations occur
in the potential and charge density are investigated. Further-
more, special attention is devoted to the appearance of an ano-
malous concentration of ions in two distinct wings in the wake
of the satellite; an effort has been made to determine the
cause of their appearance,

In Chap. IV, the ion trajectory equation is rederived
to include the effect of the geomagnetic field on the problem,
Certain results which are similar to those obtained in the
previous chapter but are influenced by the magnetic field
(such as wake behavior) are calculated and shown., In addition,
the magnetic field is permitted to attain values which are
higher than those occurring in the ionosphere in order to
demonstrate the effect of a magnetic field on a plasma flow
in a laboratory simulation experiment.

Chapter V presents the conclusions of the research.
Three appendices follow this last chapter. Appendix A contains

a detailed derivation of the equation used in Chap. II to
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determine the ion density from a pair of adjacent ion tra-
jectories. Appendix B is a discussion of the numerical errors
of the solution; this appendix also describes the numerical
details of the techniques used to obtain convergent iterates
and to approximate the boundary conditions. Appendix C is

a description of the computer program and contains a listing
of that program.

It should be noted that no attempt has been made to
investigate time-dependent phenomena. A steady-state solu-
tion is assumed in the satellite reference frame; as dis-
cussed in the last section of Chap. III, some experimental

evidence exists that this assumption is valid.(32-34) In

addition, Alpert et 22.(2)

discusses the possible occurence
of a variety of wave phenomena (electron and ion plasma waves,
electromagnetic waves, and Alfvén waves) and suggests that
these waves are not dominant in the region near to the satel-
lite,

The method of solution to be described in this thesis
is not necessarily limited to ionospheric satellites and
Langmuir probes moving in an ionospheric environment., For
example, the flow of plasma over a stationary Langmuir
probe in the laboratory may be solved by this method. However,
the plasma must be collisionless in the region of interest,
and the electron comporent of the plasma must have a thermal
speed much greater than the flow velocity. Furthermore, since

the ion thermal motion is neglected, the ion kinetic energy

should be several times greater than the ion thermal energy.
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CHAPTER II: EQUATIONS AND METHOD OF SOLUTION

A. Summary of Equations and Boundary Conditions

In order to solve the problem of the interaction of a

satellite with the ionosphere, the following system of equa-

tions is employed.
First, the ion and electron number densities are given

by the zero-moments of their respective distribution func-
tions:

L d

Bi,e Sfi,edv' (2.1)

Second, the electric field is given by Poisson's equation:

2
= -y V= (ee )(n;~n). (2.2)

by

v °
Third, the ion and electron distribution functions are
given by Vlasov's equation in a coordinate system relative

to the satellite when no magnetic field is present:

X m; v (2.3)

the boundary conditions are specified on the

For the potential,

Physically,
satellite surface and at infinity.

-

V= Vsat on xsat,

—
V ~0as x = o,

Since the satellite surface is metallic, it is assumed that

all incident charged particles are neutralized. Hence, for
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the distribution functions, the boundary conditions are

-—y

f. (%

V o=
i,e ' "sat, out) 0.

where ;out represents the outward~going half space. In the
undisturbed region at infinity,

— sy
. v,
fl e(xw'

_ 3/2 - =2
‘ 1,e)—no(mi,e/2ﬂkTi,e) exp[-mi'e(v. -V ) /QkTi,e],

i,e “sat

where fi (; , v ) is a drifting Maxwellian function.

,e e i e

In the shift to the coordinate system relative to the
satellite, the time dépendence is removed from Vlasov's equa-
tion at the cost of making the distribution function aniso-
tropic at infinity. Because of this anisotropy, nontrivial
problems must be at least two-dimensional, both in real space
and in velocity space. Two classes of real satellite bodies
may be treated in two-dimensional form. The first class is
generated by rotating a two-dimensional shape which is mir-
ror symmetric about the line of symmetry. For example, a
disk rotated about its diameter becomes a sphere; a finite
line becomes a disk. This class of body will be called
"axially symmetric." The second class 1is generated by trans-
lating a two-dimensional shape along the third axis. For
example, a disk translated in such a manner becomes an in-
finitely long flat plate. This class of body will be called
"planar."

In order to obtain the solution of the interaction prob-

lem, the Poisson-Vlasov system of equations [Egs.(2.1), (2.2),
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and (2.3)] is solved by iteration until a self-consistent
electric field is found. The zero-order iteration is a;bi—

trarily chosen,
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B. Solution of the Charge-Density Equations

1. Electron Density

It is possible to make a simplification which will re-
duce the difficulty of the problem sufficiently to permit
accurate computer solutions. Since the speed of satellites
in the ionosphere is at least an order of magnetude less
than the average thermal speed of ionospheric electrons, the
drift component in the Maxwellian distribution function for
electrons may be neglected. As a result, the electron dis-
tribution at infinity is isotropic; in the disturbed region
however, it is anisotropic because the ion anisotropy influ-
ences the electron distrubution through the electric field.
I there is no electron current and if the force field can
be described by a potential (i.e., if the force is conserva-
tive), then the electron number density is given immediately

2
by the Boltzmann factor: (1 )

= e = ex
n = n_ xp(eV/kTe) n P ©.

When the satellite potential is strongly negative, the
electron current to the satellite is small, and the Boltzmann
factor is applicable over most of the disturbed region. Only
in the region directly behind and near the satellite where

the electrons dominate the net charge density does the use
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of the Boltzmann factor for the electron density lead to

any significant error in the net charge density. Moreover,
in certain cases, the potential does not vary monotonically
in the wake, and, therefore, the Boltzmann factor does not
give the correct value for the electron density of a col-
lisionless plasma. However, these errors in the electron
density influence the development of the potential field

only when their effect is allowed to accumulate over dis-
tances which are two or more orders of magnitude of the Debye
1ength.(8) Hence, the results are not extended to those cases
where the region of possible error is observed to be of this
size. Practically speaking, other limitations, such as com-

puter memory size, appear first.
2. Ion Density

General solution. Contrary to electron thermal speed,

the ion thermal speed is less than the satellite speed (by

an order of magnitude). 1In the satellite coordinate system,
the incoming ions appear to be traveling as a beam, and their
thermal velocities may be neglected except far downstream in
the wake., Of course, when the random thermal variations in the
ion motion are neglected, an unwanted degree of coherence may
be introduced into the ion motion, and precautions are neces-
sary in certain cases to avoid unwanted and artificially in-

duced singularities in the ion density. The number density is

n(x,y,z) = Sf(x,y,z,u,v,w)dudvdw, (2.4)
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where v = (u,v,w) gives the velocity coordinates for the
particle at the point of interest ; = (x,y,2) and the inte-
gration is performed over that region in velocity space where
f exists. Since the distribution function is constant along

a particle trajectory in a collisionless plasma, it is simple

to relate f at the point of interest (x,y,z) to f at infinity.

FEN) = FRVES) R 1), (2.5)

where ; =(uw,vm,wm) gives the velocity coordinates at infinity.
Equation (2.5) states that the value of f at the point (;,;)

in phase space is egual to the value of the distribution func-
tion f_ on the boundary evaluated at the velocity ;w (f°° is
assumed to be independent of ;m). This value on the boundary
is the sought value at the point (;,;) in phase space by vir-
tue of the fact that f remains constant along a trajectory in
a collisionless plasma.(35) Of course, determination of the
trajectories of all particles in phase space is a nontrivial
task which requires the solution of Newton's equations. Hence,
it has been demonstrated that the solution of Vlasov's equa-
tion can be replaced by the solution of Newton's equations.
Equivalently, if the trajectory equations ;(g,;w) are known,
then the characteristics of Vlasov's equation are also known.

Now, by substitution of (2.5) into (2.4)

n(x,y,z)

1
-
—

8
—
o

, v ,w )dudvdw
[} -] o

d(u,v,w)
d(u_,v_,w)
o [« -] o

H
P
‘sﬁ
8
o

Ivlw) dudde,
o -} o o (-] o
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Thus, it has been demonstrated that the general problem of

finding the number density in a collisionless plasma is equi-
valent to that of finding both the Jacobian of the trajectory
equations and the region of existence for the distribution

function at the point of interest. If, for example, the dis-
tribution function at infinity is a monoenergetic beam moving
with a velocity 30 =(uo,vo,wo), then the density is no longer

an integral, Since

fo= noé(u-uo) é(v—vo) 6(w—wo) .

then

o]

= U
d(u,v,w) o o

o afu ,v ,w) = v .
® o 3 -] [e)

© o

n(x,y,z) = n

£ <

Since an analytical solution for the two-dimensional tra-
jectory equations is difficult to find, the partial deriva-
tives which comprise the Jacobian must be obtained by numeri-
cal means. These derivatives of the trajectory equations vary
in real space; their variations are governed by ordinary dif-
ferential equations. The method for finding the Jacobian, how-
ever, has not been programmed since more direct methods exist
for obtaining the number density when the distribution func-
tion of the ions is a monoenergetic beam.

Flow-field method. One such method makes use of a con-

cept analogous to streamtubes in fluid mechanics, where a tube
of flux is defined by a set of test particle trajectories
which traces the wall of the flux tube in space. It is as-

sumed that no trajectories from either inside or outside the
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tube can cross the wall of the tube. Then, whatever material
is inside the tube of flux initially remains there for the
entire length of the tube. This conservation law is expressed
by the equation of continuity in continuum mechanics for a
steady state problem:

v.J=0,
where J = nev is the ion particle flux. Integrating this
equation over the volume of a flux tube and using the diver-

gence theorem,
Sv-&'du=§3-d§=o.
S

If the surface of integration is a flux tube, then the only
non-zero contribution to the surface integral comes from the
two ends of the tube. The particle flux normal to the wall
of the tube is zero since the wall has been defined to be in

the direction of the particle flux. Thus,

® (2.6)
where Im and I are the total currents (1=3.K) entering and
leaving the flux tube, regpectively. (The symbol o for in-
finity designates the undisturbed region.) If the radius
of the tube is small compared to distance over which the
variables of the problem change, then the particle fluxes at
the tube ends can be estimated. It is assumed that the par-
ticle density and the velocity remain constant over the tube
end and that the velocity vectbr is parallel to the normal

vector of the area at the ends. Then,

Im= nwevw- A°° and I = nev - (2.7)

>l
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where n_and n are the number densities, Gm and v are the
particle velocities, and Km and A are the areas of the two
ends of the tube.

In Fig. 2.1 a flux tube defined by two computed tra-
jectories is drawn. The ion density at the point of interest
P is obtained by substituting computationally convenient quan-
tities for the velocity v and area A into Egs. (2.6) and (2.7).
In the planar case, the density is,

vmzm

o v L' (2.8)

In this equation v and Vo are the ion velocities in the x
direction at infinity and at the point of interest, respec-
tively; 2. and 4' are the tube widths in the y direction at
infinity and at the point of interest, respectively. [See
Appendix A for derivation of Egs. (2.8) and (2.9).] In the
axially symmetric case, there is an additional geometric fac-
tor which accounts for the radial compression or expansion

of the flux tube (which, in this case, is a ring). Thus,

the density is

v iy

® o o
s ————

= n \
o Vxl y (2.9)

where y is the radial distance from the axis of symmetry to
the point of interest, and ywis defined as follows: In order
to determine the geometric compression factor, the radial dis-
tance of the source of flux at infinity must be calculated.

An "imaginary" trajectory is assumed to pass through the

point of interest, and its locus is estimated from the two

calculated trajectories defining the flux tube. Y is the
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radial distance from the axis of symmetry to the point at
which the "imaginary" trajectory is estimated to begin.
If the two adjacent trajectories intersect, at the
point of intersection the tube width £' is zero, and the
charge density is infinite. Hence, at grid points in the
vicinity of the intersection, abnormally high values of
the ion density occur. However, in succeeding iterates of
the Poisson-Vlasov system where the electric field is ob-
tained more accurately, the trajectory crossing is expected
to disappear. (See Appendix B for a discussion concerning
the influence of croséing trajectories on the accuracy of

the solution.)

"Super-particle" method. In order to verify the ac-

curacy of the assumptions made in the flow-field method des-

cribed above, the method used by Maslennikov and Sigov(21’22)

and Kirstein g;_g;.(37)

(henceforth called the "super-particle"”
method) is presented. 1In this method a beam of ions incident
on the region around the satellite is divided into discrete
packets of density. The particle at the center of the den-
sity packet is assumed to be representative of all particles
in the packet. The trajectory of this representative particle
is followed over the region of interest. The region itself

is divided into volume cells; whenever such a representative
trajectory passes through a cell, the packet of density car-
ried by the representative particle is smeared out over the

entire cell and is weighted by the amount of time which the

particle has spent in the cell. By tracing the paths of all
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the density packets in this manner, a complete picture of
the number density can be constructed to an accuracy of a

volume cell.
The flux of particles in a density packet éntering the
region is
1.= ncchoAco= nwVwAEwLw,
where L is a unit length in the "invariant" direction (Fig. 2.2).

In the volume cell, the flux is

I = nvA = nT/t = nAxpAyL/t,:

where T is the volume of the cell and t is the time spent in
the cell by the representative particle. Since the flux re-
mains constant along the trajectory, the density is

V.Azmt L°°

n = n&vm [_)- AxAy L ‘

where the sum is taken over all particles. For particles which
do not pass through the cell, the time spent in the cell, of
course, is zero; hence, these particles do not contribute to
the charge density of the cell.

A serious disadvantage of the 'super-particle"” method is
that a vast number of trajectories must be computed in order
to determine the charge density to a minimal accuracy (which
allows only a very coarse solution). In order to estimate
that accuracy, suppose that k representative particles (each
carrying a unit of charge) pass through a volume cell. Let
the kX + 1 particle graze one of the walls of the cell. Now
let a small perturbation in the field force that particle

into the cell. Then the unit charge carried by that particle
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is assigned to the grid point at the center of the cell, and
the charge density of the grid point will increase from k units
to k + 1 units. Since this increase is due to an infinitesimally
small perturbation in the force field, it can be assumed that
the finite change in density is a result of the error of the
model. Therefore, the relative error of the charge density
when computed by the "super-particle" method is approximately
t(k + 1)- X]/k = 1/k, where k is the number of particles in
a cell. 1If, for example, 20 trajectories pass through a cell,
then the computed charge density is accurate to +5%. In order
to estimate the total number of trajectories needed for a den-
sity accuracy of #1/k per cell, it is not necessary to multi-
ply the number of trajectories per cell by the total number
of cells. Fortunately, one ion trajectory passes through a
large number of cells, a number not less than the number of
cells lying in the horizontal direction since the ion beam
moves in a nearly horizontal direction. Then the total num-
ber of trajectories necessary to provide a charge density ac-
curate to +1/k is found by multiplying the number of trajec-
tories k per cell by the number of cells n lying in the verti-
cal direction, i.e., nk. Typical satellite problems have at
least 20 cells in the vertical direction. Therefore, a mini-
mum of 400 trajectories is necessary to obtain a charge den-
sity accurate to +5%.

The major reason why the "super-particle” method requires
a large number of trajectories is that very limited use is
made of the calculated parameters of the trajectories. Sup-

pose two neighboring particles are traced. As they pass near
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a particular cell, their parameters are examined to deter-
mine whether both, one, or neither have passed through the
cell. The "super-particle" method requires no further data
on the particle location. Essentially, the method requires
calculation of a smoothly varying trajectory in order to de-
termine whether a particle passes through a particular cell.
The actual location of the particle is irrelevant in the

"super-particle" method.

Comparison of flow-field and "super-particle" methods.

The flow-field method is a considerable improvement over the
"super-particle" method. For a given number of trajectories,
the accuracy of the former is approximately an order of mag-
nitude greater than that of the latter,

In the flow-field method, the error in the number density
arises primarily from the small but discontinuous changes in
density value between flux tubes. Although each flux tube is
assumed to carry a density which is constant over its cross
section, this density varies continuously along the length
of the tube as the walls of the tube (represented by two tra-
jectories) compress and expand under the influence of the
electric field. 1In the "super-particle" method, however,
each density packet remains constant irrespective of its lo-
cation in the disturbed region. Although identical informa-
tion is known about the trajectories (namely, their loci and
velocities) in both methods, in the flow-field method that
information is used more effectively to obtain the charge
density. As a result, only a few (2-5) trajectories per ver-

tical cell are needed to obtain charge density records accurate
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to £5%. Since the ion density computation consumes a con-
siderable portion of the total computation time, the flow-
field method provides a more accurate solution in a given
span of computer time. It also makes possible the introduc-
tion of such complicating factors as an extended region of
disturbance, complex satellite shapes, a magnetic field, and
accurate estimates of ionospheric satellite properties such

as current and drag.

38



C. Solution of the Trajectory Equations

In order to obtain the ion number density by either the
flow-field method or the "super—parﬁicle" method, it is neces-
sary to calculate the trajectories for a number of represanta-
tive ion particles. The trajectories of the representative
particles can be computed rapidly if it is assumed that the
electric forces acting on the particles are constant over a
cell. The potential field from which the electric field is
calculated is given only at a finite number of points (as a
consequence of the finite-difference method used in Sect. D
to solve Poisson's equation). These points, by design, lie
at the corners of the volume cells. As a first approxima-
tion, it can be assumed that if the potential is known only
at the grid points, then the force field is also known only
at the grid points and, therefore, is constant over the cell.

The advantage of assuming constancy over a cell is that
Newton's equations can be integrated exactly using no fur-

ther finite-difference schemes. These equations are

dx/dt
dy/dt

u, du/dt F,
v, dv/dt G,

where F and G are the forces per unit mass in the x and y

directions, respectively, i.e.,

Pt T g ga.& X
i i Y

Dimensionless variables. These equations can be made

dimensionless by introducing the following dimensionless

variables.
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Let

t' = w t,
P

X' = X .
/XD

v' = v/vT,

where

2 1
w = (ne“/¢e m )’ = the electron
P o ce
plasma frequency,

1
A (eokTe/noez)2 = the Debye length, and

D=

1l
v AW = (kTe/me)é = the electron ther-

T D'p mal velocity.

The scale length is chosen to be the Debye length since the
electric forces act over distances which are of the order of
magnitude of the Debye length. Since the electric potential
is of the order of the electron thermal energy, the scale
velocity is chosen to be the electron thermal velocity. As
a result, the scale time becomes the inverse of the plasma
frequency, which is a familiar guantity and is the ratio of
the electron thermal velocity to the Debye length. These
scaling variables have been introduced primarily to simplify
the governing equations and to set the magnitude of the nu-
merical values of length, velocity, and time within one or
two orders of unity. The introduction of these scaling
variables does not imply any particular assumption about the
method of solution. Any 1ength and velocity could have been
used in the computer solution; however, this particular choice
simplifies the expression of both the trajectory equations

discussed here and Poisson's equation to be discussed later.
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Also, introduce the following dimensionless variables:

0 = eV/kTe and B = mi/me.

Then set

K-

and  G' = -7 7 (2.10)

w |

now, Newton's equations in dimensionless form are

dx'/dt* = u' du'/dt' = F°
dy'/dt' = v' dv'/dat’

GQ

For the remainder of this discussion the primes have been omit-

ted, and all variables are to be considered as dimensionless.

Time of flight through cell. As mentioned previously,

these equations may be solved easily if the force remains
constant over a cell. Suppose the entrance parameters to

e , , . i ara rs , , vV
a cell are xo, yO uo vo The exit paramete y1 u1 1

at the far wall of the cell where x = x1 must be determined

by the integration of the first two of Newton's equations,

u=Ft + u and X = Ft2/2 + ut+ x .
1) - o o

Then the time of flight through the cell is

€ = (- ug ¢ [“i * 2R (x- xo)]k>/F (2.11)

It follows that

2
= 2 + + . . = Pt_+ . = Gt,+ v .
Yy th/ vot Y, u F u v o

1
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¥y is compared with the dimensions of the cell in order to
determine whether the particle has left the cell via the far
wall. If it has not, the time of flight is recomputed by
making the assumption that the particle has left the cell
via one of the side walls; this possibility is now checked.
In fact, the program makes provision for the case where the
particle turns around in the cell and exits at the same wall
by which it entered.

Generally, the forces on the particles are very weak
compared to the particle inertia. In this case, Eq. (2.11)
for tl' the time of flight, is not accurate numerically, and

an expansion of this formula must be used:
u r
tl= T {— 1+ L1 + :— (x - X )]% }
o

u

. _©O 1l r2rF _ lr2F 2

~ = (-1 + {1 + > 5 (x x )] 8L 2 xo)] +
s

+'%€ [ﬁ% (%~ xo)]3 }>
o
X, - X

oLl o 1 rE T ATE ]2}
¥4 -3 [5 e x) [+ 3 [55 m %)
o u u

o o
This formula is used for rapid computation of the time of
flight in most of the cells of the region of interest. The
formula is inaccurate only in cases where F is large, ug is
small, or x.= X in these cases the originally derived

1
equation must be used.
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Electric field. It is appropriate at this point to

describe the technique employed to obtain from the potential
field the force field necessary for the trajecﬁory calculation.
The method of solution for the potential field will be des-
cribed later in Sec, D. It should be noted that the force
field obtained here is one of the sequence of iterates ap-
proaching the self-consistent electric field. 1In order to
keep the derivation simple, equal spacing between grid points
is assumed; in the computer progrem, variable mesh size is
employed in all formulas. The variation in potential is as-
sumed to be quadratic, passing exactly through the potential
values of the point of interest and of the two neighboring
points (in Fig. 2.3, uij is the value of the potential ¢ at

the grid point (i,j):; h is the mesh size).

FIG. 2.3. GRID POINTS FOR COMPUTATION OF a¢/ax AT (i,i)%" POINT.
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The equation of such a quadratic is

u, ~2u, .+u, . u -u
i+l, i i-1, 2 i i i-1,1
o = ] > 1 _] (x-x )% + i+1,3 i l,](x_x')+ a. ..
2h i 2h 1 1j

Thus the derivative of the potential in the x direction is

u. —2u, .+u, , . .~u, .
¢ _ _itl,J 17 ul~1tl(x_x )+ u1+;,3 Yi-1.4
X 2 - i *
h . 2h
At the point of interest wh =X.,, ag = . -
o) ere x=x, e/ ax (u1+1,j ui—l,j)/Zh'

Apparently this formula is the same as that derived on the
basis of a linear approximation. In the case of unegqual mesh
sizes, however, the two derivations do not yield the same values.
In the quadratic case, the point closer to the center point is
given more weight than the point farther away; in the linear
case, the weights are equal. (For points on the boundary,

no neighboring points beyond the boundary exist. As a result,
in order to compute derivatives for a boundary point, two
inner points on the same side of the point of interest are
used instead of one point on one side and one on the other,

as in the case of interior points.) Employing the method

of computing the derivatives, a complete record of the force

field can be constructed in both the x and y directions.

Total trajectory. The representative=-particle trajec-

tories which define the flux tubes of the ion flow field can
now be calculated. Each particle has an initial position
sufficiently far upstream from the satellite that the disturb-
ing effect of the satellite does not influence the motion of

particles at that point. The particle enters the first cell
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with an initial velocity equal to and opposite that of the
satellite. The forces F = (F,G) acting on the particle are
estimated from the values of the previously calculated force
record at points on the two ends of the cell wall., A linear
approximation is used to aécount for the starting location
of the particle relative to the wall ends. This estimated
force is assumed to be constant over the cell, and the loca-
tion and velocity of the particle as it exits the cell is
calculated by the method described above. These exit para-
meters become the entrance parameters for the next cell through
which the particle passes. A new set of forces is obtained |
from the force record, and a new set of exit parameters is
calculated. As a result, the particle trajectory is a series
of small quadratic arcs joined together to form the continu-
ous trajectory. When the particle intercepts a vertical cell
wall, its location and x velocity is retained for use in cal-
culating the particle number density; the coordinates of the
interceptions with horizontal walls are not needed for the
density calculation.

In this collisionless case, particle trajectories may
cross each other. For example, a trajectory which grazes
the satellite is pulled into the wake and may cross the center
line of symmetry. There is a corresponding trajectory which
lies below the center line and is the mirror image of the
first trajectory. It crosses the center line of the wake
region at exactly the same point as the first trajectory.
Although its velocity in the horizontal direction (x velocity)

is the same as that of the first trajectory, the vertical
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velocity (y velocity) is equal to and opposite that of the
first. As a result, whenever a particle crosses the center
line of symmetry, its y velocity is reversed and the trajec-
tory computation is continued. In this manner, all the tra-
jectories are kept in the upper half of the region, and thus
the complete charge densities are obtained even when flux
tubes which contribute to the density come from the lower
half plane.

It should be noted that the equations of motion remain
the same whether the problem geometry is planar or axially
symmetric. This apparent independence of the coordinate
system arises from the fact that the mathematical form of
the gradient of the potential (electric field) does not de-
pend upon the coordinate system used. However, the divergence
operator does depend on the coordinate system and, as will be
shown below, the equation for the potential which is obtained
by means of Poisson's equation is different for each system.
In addition, the equation for the charge density which con-

tains a geometric factor is different for each system.
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D. Solution of Poisgson's Equation

In order to determine the potential in the disturbed

region around the satellite, Poisson's equation is used:

3 =

e
- {(n,-n .
€ € ( 1 e)
(o] O

Using dimensionless variables where n'=n/n” and n_ is the
charged particle density at infinity,

—vch = n)-n',

ie

The primes will now be omitted, and these variables are hence-

forth assumed to be dimensionless. For the axially symmetric

and planar cases, the divergence operator may be written as

32 1
_Q_JE F 2 2@> =n. -n and
2 r 2ar Ar i e
2z
a2 2
-(—-% +~jL%) =n; -n,, respectively.

In discussing the solution of Poisson's equation, the planar
- case generally will be used. However, when the two cases
differ significantly, both of them will be demenstrated.
Poisson's equation is converted into‘a system of finite-
difference equations by dividing the region of interest into
a set of rectangular grid points. Although it is numerically
convenient to make the distance between the grid points (mesh
size) a constant throughout the region, it is more important

to make this mesh size much finer both near and directly
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behind the satellite (see Appendix B). As a result of the
variable mesh size, the algebraic equations are more com-

plicated.

Boundary condition. The boundary condition for Poisson's

equation is as follows: the potential is assumed constant and
known on the satellite, and it falls off toward zerc as the
distance from the satellite approaches infinity. Since the
region of interest must be finite in order to insure a finite
number of grid points, it is impossible to locate the outer
boundary at infinity in this model problem. As an alterna-
tive, the potential or its gradient, the electric field, is
assumed to have a known functional dependence on the dis-
tance from the satellite. Generally, a dependence on an in-
verse power of the distance is assumed. This choice of boun-
dary condition has the advantage that if the boundary were
allowed to tend to infinity, both the potential and its gra-
dient, and, in fact, all higher order derivatives of the
potential would tend to zero. Studies have been made to
estimate the relative merits of the various possibilities;
nevertheless, for the satellite-interaction problem, setting
of the potential to zero has been shown to be no less ac-
curate than any other approximation of the boundary condition

(38)

when the overall computation time is considered. Since
the zero-potential boundary condition is simple to apply, it
is employed here for the solution of this problem.

In order that the number of grid points may be reduced

by a factor of two, the problem is made symmetric about the
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center line. Therefore, along this center line the normal
electric field is zero. 1In the axially symmetric case,
this boundary condition is inherent in the algebraic equa-

tions; in the planar case, it must be applied.

Solution of finite-difference equations. The conversion

of the partial differential equation into a system of finite-
difference equations is rather simple. The axially symmetric
case is as follows [in Fig. 2.4, uij is the value of the po-

tential ¢ at the grid point (i,j); h is the mesh size]:

Ji,j+l

ui-|’jo .

Center line of symmetry

FIG. 2.4. GRID POINTS FOR COMPUTATION OF -v2¢ AT (1,j)th POINT.
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The Laplacian is:

2
/A ep 123 A 4 1 1
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The planar case can be recovered from the axially symmetric

case, if rij is allowed to tend to infinity, as follows:

2 2
_(j_s:+§__cg>~.4._u P, I P, i,
2 2 ~ 2 ll— 2 . '— 2 l— .- " v - . l‘.
ax 3y h iy i+l,3 h i-1,3 h2 i,Jj+1 h2 i, j-1

(2.13)

Each grid point where the potential is unknown has a similar
equation relating the value of the potential at the point
(i,j) to the values of the potential at the four neighboring
points. These equations may be cast into matrix form--if N
grid points exist in the region of interest, the dimensions
of the matrix are N x N, Of course, the matrix is sparse
and, in fact, has only five non-zero diagonals since the
(i,j)th equation always relates the (i,j)th value to only
four neighboring values.

This diagonal feature of the matrix suggests an iterative
method of solution. 1In matrix form, the system of algebraic

eguations is:
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(N =m X n, where m and n are the number of horizontal and
vertical points, respectively.) The system is nonlinear since
the electron density ng depends on the potential ¢ through
the Boltzmann factor. It has been proved that the iterative
technique to be used converges only in the linear case.(30)
Nevertheless, in this particular nonlinear case, the tech-
nique also converges.

If the matrix were merely tridiagonal instead of five-
diagonal, the problem could be solved explicitly. An al-
gorithm based on Gauss' method of elimination determines

the exact values of the unknown points if they depend on
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(30)

only two neighboring points. That is, if the values

of the points in the two horizontal chains adjacent to the
horizontal chain of interest were known, the‘ekact values in
that entire chain of interest could be determined easily.
Therefore, it is assumed that the values in the chains above
and below the chain of interest are known, and using those
values the chain of interest can be solved. Then, proceeding
to the next chain above and using the previously computed
values for the adjacent chains, the values for the new chain
can be found. 1In this manner a sweep is made through all
horizontal chains again and again until the maximum absolute
value of the difference between any two iterations is less
than the prescribed error bound; then the solution is said
to have converged.

In matrix form, this method is equivalent to splitting
matrix A into a tridiagonal matrix B and a two-diagonal matrix
C. It has been stated that the matrix equation having as an
operator the tridiagonal matrix B can be solved explicitly:;

.. . C s . -1
this is equivalent to finding the inverse operator B .

Au=Bu-Cu=p (u.
Bu=Ccu+p (u.
a=38tlcu+p @l

(o)

is guessed. Using that solution, a sweep is

(1)

A solution u

made over all horizontal lines, and a solution u is found.

(l), 2(2) can be found. Formally,

g (A1) —l[c LN ) (u(n)ﬂ

~ —~

Using u



(n+l)_

n), .
When max |u 5( )] is less than the error bound, then

the iterative procedure is halted.

"Alternating direction implicit" method. Two improve-

ments can be made in this scheme. The first examines the
difference between two successive iterates and assumes that
a more accurate iterate than either of these two iterates is

one which is a linear mixture of these two iterates. That 1is,

L 3(n)> ™
If w= 0.5, then 5,(n+1)= A (E(n+l)+ g(n)>, a simple average.
If ¢w = 1.0, then u'(n+l)= g(n+1)

s

new solution goes "beyond" either of the two iterates. This

. Therefore, if ¢ > 1.0, the

method of mixing iterates is called overrelaxation. Natural-
ly, if ¢ is too large, the iterates will become unstable; in
fact, in the linear case g must be less than 2.0 in order to

(30)

insure convergence. The best value for the relaxation
parameter w is one which reduces the number of iterates to
a minimum for a fixed error bound. In practice, the best
value of ¢ lies between 1.2 and 1.8. This value is diffi-
cult to estimate in advance and, therefore, is generally
determined empirically even for the linear case.

A second improvement can be made by sweeping not only
across horizontal chains of grid points but also across ver-
tical chains. The algorithm is identical in both cases, andg,
by alternating the direction of the sweep, the fast implicit

tridiagonal solution can be applied in both directions.
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Coupled with overrelaxation, this "alternating direction
implicit" method (ADI) is one of the fastest methods for a
computer solution to Poisson's equation with general boundary
conditions.(3o)
Formally, the ADI method of solution can be expressed
as two matrix equations. For the horizontal sweep, é_is
split into two matrices B, and Cpr where A = B~ Sy and
EH is the single upper diagonal matrix relating the values
of the horizontal chain of interest with those of the next
chain above. Similarly for the vertical sweep, A is split
into two matrices gvkand QV' where A = gvf SV and EV is
the single upper diagonal matrix relating the values of the
vertical chain of interest with those of the next vertical

chain. Then the horizontal sweep is

o™ =gl ™ p ™)1 s mwa ™.

The following vertical sweep is

u(n+2) _ wEf [c u(n+1)+ 3 (E(n+l))] +(l_w)}l(ml).

1
vV T~V~

—~—

This procedure is iterated until a convergent solution is

obtained.

Boundary points. If an extra line of grid points is

added onto the border of the region of unknown points, then
the boundary conditions are automatically satisfied when the

values of the border points are set equal to the known values
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of the potential on the boundary. If the electric field
rather than the potential is known, as is the case along
the center line of symmetry, then the values of the potential
may be calculated on the outer line of grid points by using
the potential values from the previous iterate and interpo-
lating. For example, along the center line, the normal
electric field is zero; if the potential values of the grid
points of the line immediately below the center line are
set equal to the corresponding values of the grid points of
the line immediately above the center line, then the poten-
tial gradient across the center line will be approximately
zero for the next iterate.

On the other hand, the algebraic equations governing the
potential of the grid points on the boundary may be altered
to include the effect of the boundary conditions. It is
usually more convenient, however, to leave all equations in
identical form and to set the potential of the boundary points
to their known values before each iterate. 1In either case
the equations governing the potential of those points which
lie of the satellite and whose values are therefore known
rust be altered in order for the satellite potential to re-
main at its fixed value as the potential field around the
satellite is being determined.

In addition to setting the potential of the boundary
points equal to their known values before each iterate, the
number density or right-hand side of Poisson's equation must
be determined. As described in the previous section, de-
termination of the number density of the ions is difficult

and timne consuming. Therefore, that calculation is done
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only after the potential field has been calculated rather
accurately. The electron density, however, is a simple
function of the local potential and may be calculated quickly
before each iterate. In fact, it must be calculated before
each iterate, or the solution of the Poisson-Vlassov system
of equations will not converge. The system is more sensi-
tive to changes in the electron density than in the ion
density because the electrons have less kinetic energy than
the ions and therefore, are influenced by the electric field

to a much greater extent.
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E. Summary of the Method of Solution

The solution of the system follows in a natural man-
ner. First, by means of the ADI method, Poisson's equation
is solved to a moderate degree of accuracy while the ion
charge density remains fixed. As the potential converges
toward a steady value, the electron density is allowed to
follow it. Then, using these values of the potential fielg,
the ion flow field is computed, and the resulting ion charge
density is used to compute a new potential field. A succes-
sion of potential solutions called major iterates is construc-
ted. When the major iterates converge, the problem is solved.

In order for the major iterates to converge, they must
be "underrelaxed." If the ion charge density which is com-
puted from the potential field is used directly to compute
a new potential field, the system will not converge. To
assure convergence, the new ion density must be averaged
with the ion density of the previous major iterate. The
relaxation parameter is found empirically to range between
0.25 and 0.75, depending on the inherent stability of the
.problem, Not only the ion density but also the potential
field can be underrelaxed from major iterate to major iterate.
In this case, however, the underrelaxatioﬁ is a refinement
of the technique and is not necessary for obtaining a con-
vergent solution. (See Appendix B for the numerical details

of the convergence of the solution.)
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CHAPTER III: NUMERICAL RESULTS

A. Introductory Remarks

Important quantities. 1In the computer solution of the

problem, the potential, the electric field, the ion-flow

field (as represented by a large number of ion trajectories),
the ion density and the electron density are obtained as
functions of the spatial coordinates in the horizontal (x)

and vertical (y) directions. Both the potential field and

the ion-flow field have smaller variations in their values
than the remaining quantities and are, therefore, easier to
plot. Since the potential is, in a sense, the result of
"double integration" of the charge density (the charge den-
sity being the result of "double differentiation" of the po-
tential in Poisson's equation) both numerical errors and
rapid variations in the charge density are "smoothed out"

in the potential, Because of this fact alone, the potential
field will be plotted. Moreover, the potential field is of
considerable interest since its values can be compared with
experimental values measured by satellite instrumentation.

The ion-flow field will be plotted also since measurable
quantities such as ion currxent and satellite drag can be ob-
tained from it. Moreover, since the ions are hypersonic, their
trajectories are influenced only moderately by the electric
field and therefore their slow variations can be plotted
smoothly and accurately. On occasion, plots of other variables
such as ion number density will be shown in order to emphasize

properties of the wake or to compare with experimental data.
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Comparison with independent solution. Generally, a com-

puter solution is assumed correct only after it has been com-
pared with an analytic solution for the same problem. In the
problem under consideration, however, no analytic solution is
possible when the physical parameters of the problem are set
equal to values which occur for a satellite in the ionosphere,
Analytic solutions do exist for problems where one or more of
the parameters are vanishingly small or infinitely large
(limiting cases). However, as is usual for this type of
problem, the camputer program cannot be extended to these
limiting cases of parameter space.

Nevertheless, there is a means of testing the accuracy of
the computer solution in this case. It can be compared with
another numerical solution obtained for identical parameters,
where identical assumptions are made, but an independently de-
rived method of solution is used. Such a numerical solution
which has identical assumptions and which is derived in an inde-
pendent manner was obtained by Maslennikov and Sigov.(Zl'zz) As-
suming zero ion temperature and the Boltzmann factor, they
obtained the potential field around a spherical satellite
having a radius of one Debye length. The satellite is mov-
ing at 106 cm/sec in an ionosphere composed of cold oxygen
ions and warm electrons at a temperature of SOOOOK. These
values for ionospheric conditions correspond to an ion kinetic
energy which is a factor 19.4 greater than the electron ther-
mal energy. For their choice of parameters, a computer solu-
tion using the method discussed previously in Chap. II was
found for the potential field. A contour plot of the potential

is shown in Fig. 3.1. The satellite potential is zero relative
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to the ambient plasma, the horizontal and vertical axes are
measured in Debye lengths, and the ions move frqm right to
left. 1In the contour plot the dotted contour lines are taken
from the potential field solution of Maslennikov and Sigov.(21)
The agreement is well within the accuracy claimed for the two
solutions. (See Appendix B for a discussion of the numerical
accuracy of the solution of the present study.) It must be
remembered that for the two solutions the exterior boundaries,
mesh sizes, number of ion trajectories, number of iterations,
and, in fact, the overall methods of solving Poisson's equa-
tion and the ion density equation are derived independently.
Therefore, it is reasonable to assume that no gross miscalcu-

lation has been made in either of the two solutions.

Satellite shapes. Since in the satellite frame of refe-

rence the ion kinetic energy is usually much greater than the
electron thermal energy (the ratio of the ion kinetic energy
to the electron thermal energy, defined as the dimensionless
gquantity EKE'
alter the ion trajectories are weak, and the attracted ions

is much greater than unity), the forces which

travel considerable distance downstream before they enter the
disturbed region. The shape of the wake, therefore, is gener-
ally much longer than it is wide. Hence, it is both efficient
and convenient to use rectangular rather than polar grid lines
to divide the region of interest into discrete areas. How-
ever, it is both inconvenient and inefficient to approximate
a spherically shaped satellite by means of a rectangular grid.
A shape which is convenient for a numerical solution is
an infinitely thin disk whose normal is parallel to the direc-~

tion of the flow velocity. The representation of a thin disk
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on a rectangular grid is simply a vertical segment, one end

of which lies on the axis of rotation. When this line seg-
ment is rotated about the symmetry axis, the resulting figure
of revolution is a disk. The line segment is easy to repre-
sent on a rectangular grid; a number of consecutive grid points
on a vertical line is designated as the satellite body, and

the values of the potential at these points are set equal to
the satellite potential.

The body dimension in the flow direction .does not strongly
influence the development of the disturbed region; the cross
section of the body accounts for the removal of the ions from
the disturbed region.(z) Therefore, if the radius of the
disk (length of segment) is equal to the radius of the sphere
and if all other parameters are equal, then the resulting con-
tour plots of potential are expected to be very similar except
in the neighborhood of the satellite body. Adjacent to the
body, the lines of equipotential will have to match the equi-
potential surface of the body; therefore, in this area the
lines may differ for the two bodies,

Figure 3.2 is taken directly from Fig. 3.1; in Fig. 3.2
however, as in most later figures of potential and ion flow,
the vertical axis has been expanded in order that the disturbed
region may be shown more clearly. Figure 3.3 is a contour plot
of potential for a disk satellite; all other parameters are
identical to that of Fig. 3.2, (i.e., E_ = 19.4, e

KE sat

T at 1). The vertical axis has also been expanded. As

expected, the two figures have a very similar character for

=O'

the development of the potential field. The regions of
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disturbance are nearly identical; furthermore, the depths of
the potential wells directly behind the satéllite are identi-
cal. Even around the satellite, the two figureé show a re-
markable similarity in spite of the fact that the body shapes
are different. Because of these very similar results and the
fact that the numerical solution is considerably simplified
for the line segment case (resulting in a 20% decrease in com-
puter time and an unmeasurable increase in programming con-
venience), further results were obtained mostly for the disk
-case and its planar analog, the infinitely long flat plate.
Nevertheless, certain results (e.g., ion current to satel-
lite) will have a dependence on the horizontal dimension of
the satellite; in such cases, results will be provided for
the sphere and cylinder as well as for the disk and plate.

Range of parameters. Since the solution to the inter-

action problem has now been tested by comparison with a pre-
vious solution, the satellite and ionospheric parameters are
varied to obtain results over the widest possible range. Part
of the results obtained constitute a complete set of plots of
the equipotential contours and the ion flow field for various
values of the parameters, Those parameters describing the
satellite and its environment include satellite shape, satel-

lite potential Peat’ satellite radius r (or half-width in

the case of a plate), and the kinetic ezzzgy of the ions éKE'
The electron temperature and the charged-particle number den-
sity appear indirectly in these parameters by means of the
normalizing quantities of electron thermal veloeity, Debye

length, and plasma frequency. The satellite shapes chosen
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are the two most commonly found in application, a sphere and

a long cylinder (end effects neglected), and two others which
are the most convenient to study, a disk and a long flat plate
(likewise, end effects are neglected). The disk and plate

are similar in behavior to the sphere and cylinder, respec-
tively. Both the cylinder and plate are oriented in such a
direction that their axes are perpendicular to the flow velo-
city.

Results were obtained for a half-width as large as 25
Debye lengths., At this half-width a rather large amount of
core memory (= 107 bits) and, therefore, an unusual computer
were needed for the solution of the problem. A satellite of
this size has the properties of a "large" satellite where
"large" means, in the literature, rsat>> 1, A further in-
crease in the satellite size did not seem warranted when the
resulting information was compared with the computer time neces-
sary and the ensuing cost. A lower limit of 0.2 Debye lengths
was chosen since few satellites or even satellite probes of
this half-width (=~ 0.3 cm at 3000 km altitude, smaller at
lower altitudes) are found in practice, This solution can

be classified as a solution for "small" body size (rs << 1)

and compared with other solutions for '"small" bodies.atIn
addition, at this half-width value, the grid spacing must be
much smaller than the Debye length, and as a result, the com-
puter time required to achieve a solution for smaller body
size increases very rapidly. (For further discussion on
grid spacing, see Appendix B.)

In a few cases, the satellite potential is set as high

as zero; as a result, the electron number density is not

66



exactly proportional to the Boltzmann factor. Nevertheless,
since the inaccuracy occurs only in the neighborhood of the
satellite, the solution is approximate only in the small region
surrounding the satellite and is still generally useful. The
lower limit to the satellite potential is a function of the
other parameters of the problem. At very negative potentials
some of the ions, strongly influenced by the satellite po-
tential, reverse their paths (the sign of their x velocity
relative to the satellite changes from negative to positive).
Since the program is not designed to follow reversed trajec-
tories, it abandons the solution. 1In all cases, however, the
satellite potential is set at least as negative as -15 times
the electron thermal energy kTe and in some cases is as nega-
tive as -40 kTe.

The ions have a mass B relative to the electron mass
and a velocity ug relative to the electron thermal velocity.
The solution depends on these two parameters only through
the ion kinetic energy relative to the electron thermal energy

kTe' (to be discussed later) where

EKE = Busz /2.
Thls parameter is related to the familiar ion Mach number M
by E = M /2, where M is the ratio of the satellite speed to
%. The lower limit of this

the ion acoustic speed (kTe/mi)
parameter is 1,2 at which point the ion density calculation
is susceptible to numerical error to such an extent that a

convergent solution becomes difficult(see Appendix B). This
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lower limit is well below the minimum of about 6 occurring in
the ionosphere. The upper limit of the ion kinetic energy is
36. Higher values of this parameter do not contribute much
insight into the behavior of the interaction and serve only
to increase the area of the disturbance and, consequently, the
computation time,

In summary, the range of parameters for which solutions

have been obtained is: -~40 < ¢ <0, 0.2<r < 25, and
sa sat

t
l.2 < EKE< 36. Solutions have been obtained for the plate,

disk, cylinder, and sphere geometries.
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B. Current Collection

In this section, the method of solution is applied to
determine, for the first time in detail, the properties of
current collection by satellites. 1In particular, the in-
fluence of the physical parameters upon the ion current is
investigated thoroughly, and plots of ion current vs. satel-
lite potential are shown. These plots may be employed for
the analysis of experimental data. As an application, an
exact value for the floating potential is calculated at the

end of the section.
l. Ion Current

Introduction. The ion current collected has a basic

component arising from the current swept up by the moving
satellite. Consider a satellite at plasma potential, i.e.,
with zero potential relative to the plasma. In the satel-
lite frame of reference, it appears that a beam of ions inter-
cepts the satellite. It is assumed that the intercepted ions
are either absorbed by the surface or neutralized and reflec-
‘ted as neutral particles. This ion current will be refer-

red to as the "ram" current and in dimensionless units is
equal in value to Iio= usAs' where uS is the satellite speed

and As is the cross-sectional area of the satellite., For a

. , 2
disk or a sphere the cross-sectional area is As= T oae! for

a cylinder or a plate, A = 2r _ L, where L is the length of
s sa

t
the cylinder or plate. For these two satellite bodies, there-

fore, it is convenient to find the ion current per unit length
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(in units of Debye length) rather than the total ion current
Henceforth, the "ram" current for ions Iio will bg considered
in the case of spheres and disks as that current incident on
the entire surface of the body:; for cylinders and plates it
will be that current per unit length incident on the body.

As the satellite potential is permitted to become more
negative (ion-attracting), its ion current increases, This
increase arises from the increase in the number of ions at-
tracted to the satellite body., This increase is, however, slow
because the negative potential has a moderate effect on the ion
trajectory.

Normalization of ion current. Figure 3.4 shows the

normalized ion current Ii collected by a plate satellite as a
function of satellite potential. The ion current has been
normalized by the value of the "ram" current in order to show
clearly the effect of the ion-attracting potential as it is
increased negatively. It is interesting to note that the
normalized ion current collected by a satellite at plasma po-
tential is not exactly equal to unity. The actual value of

the plasma potential current in this case is 0.9994. The
reason for this minor discrepancy is that the negative poten-
tial occurring in the wake curls slightly over the edge of the
satellite and in front of it. (See Fig. 3.3 which is a con-
tour plot of the potential field for a similar case.) Although
the field is negative and is therefore ion attracting, it is in
such a position that it deflects a minute, yet measurable por-
tion of the ions making up the "ram" current away from the

satellite, Nevertheless, the difference between the "ram"
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(EKE= 12, Foat™ 1). NOTE NEARLY LINEAR DEPENDENCE.

71



current and the plasma potential current is very small, and,
therefore, the two ion currents shall be considered as one.
For the chosen parameters (é

KE
ponding to a body radius of 1.5 cm at a 1000-km altitude), the

=12 and r =1, corres-
sat

growth rate of the ion current is only 1.3% per unit of satel-
lite potential, As a result, if the ion current is to be sig-
nificantly larger than the plasma potential value Iio' then the
satellite must have a potential which is of the same order of
magnitude as the ion kinetic energy.

Functional dependence of ion current on potential., Close

examination of Fig. 3.4 reveals that the ion current has a
near linear dependence upon negative satellite potentials.

(39)

This dependence is not unexpected since Medicus and

(40)

.Brundin have shown that the ion current to a sphere or
cylinder in a central-force field is linearly dependent on
the potential. This figure, however, shows that for a plate
satellite in a noncentral-force field the ion-current depen-
dence is nearly linear., Other figures to be shown later
indicate the same nearly linear behavior of ion current over
a variety of satellite shapes and a wide range of parameters,
It can be argued that nonlinearity in the ion current is not
expected to occur.until the satellite potential has become
extremely negative, i.e., many times larger than the ion
kinetic energy. Unfortunately, this possibility cannot be
investigated with the present program. At these strongly
negative potentials, some of the ion trajectories reverse
their velocity in the x direction, and the program, unable

to calculate the correct ion density, becomes invalid and
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discontinues the computation. Hence, for these extreme values
of potential, the ion current is not determined. .

It is possible to use the results of certain experi-
ments to give an indication of the behavior of the ion cur-
rent for larger ion-attracting potentials. Experiments simu-
lating the satellite-ionospheric interaction have been done

with small bodies in ion beams.(32'4l)

These experiments show
that saturation occurs for neither moderately nor, in fact,
highly negative potentials. A possible explanation for the lack
of saturation in the ion current is that the ion density de-
creases in the neighborhood of the front of the body when the
potential is made more negative. This decrease in ion number
density arises from the increase in the ion velocity as the ion
is accelerated toward the body. Therefore, the shielding effect
on the potential field by the positive charge density is some-
what reduced. As a result, the potential field is not shielded
sufficiently to alter the nearly linear dependence of the ion

current on the body potential.

Influence of satellite geometry on ion current. 1In a

strict sense, it is not true that the cross section of the
satellite is the only body dimension which influences the be-
havior of the plasma flow. To a certain extent a sensitive
variable, such as the ion current, is dependent upon the exact
shape and length of the satellite. Consider a disk and plate
satellite of equal radius and half-width. At zero potential

they collect equal normalized ion currents, namely "ram" current.

However, as the satellite potential is made negative, the two
satellites collect unequal quantities of normalized ion current.

The disk collects current from the surrounding "two-dimensional”
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ring area, whereas the plate collects from the "one-dimensional"
strip area above and below the plate. The ring ;ncreases in
area as the collection region is extended radially; the strip
undergoes no such geometric increase. As a result, the disk
can be expected to attract more ion current than the plate at

a given negative potential. Moreover, the sphere and other
axially symmetric bodies will attract more ion current than
their planar counterparts. Figure 3.5 shows that the ion cur-
rent collected by the disk and sphere is greater than that col-
lected by the plate and cylinder for equal body radii.

The ion current, to a certain extent, depends on the length
of the satellite in the flow direction. At zero satellite po-
tential, the plate and cylinder collect equal amounts of ion
current. Since both bodies are planar, differences in their
ion current for negative body potentials cannot be attributed
to the geometric effect discussed above., However, since the
cylinder has a finite thickness, some of the attracted ions
which would not intercept a plate would intercept the sides of
a cylinder and contribute to the collected ion current. The
greater surface area which a cylinder has allows it to inter-
cept more of the attracted ions than a plate having the same
cross section. The same argument applies to a sphere as com-
pared to a disk of equal cross section. 1In general, the bodies
with finite thickness in the flow direction can be expected to
collect a larger amount of ion current than their infinitesi-
mally thin counterparts. Another examination of Fig. 3.5
shows that the ion current for a sphere and cylinder is, in
fact, larger than the ion current for a disk and plate, re-

spectively. Although the currents themselves are not vastly
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different, their rates of growth as a function of satellite
potential differ by as much as factor of two.

Angular dependence of ion flux. The detailed behavior of

the ion flux (current per unit area) as a function of the loca-
tion on the surface of a cylinder satellite is of considerable
interest. Since certain satellite instrumentation is sensitive
to the incident charged particle flux, it is important to know
how the flux varies as a function of the polar angle 6 between
the direction normal to the surface at the point of interest and
the direction of satellite flight., The electron flux can be
expected to be independent of the polar angle since the thermal
velocity of the electrons is much greater than the satellite
velocity and, hence, the electron flux is uniform over the en-
tire surface. The ion flux will depend on the polar angle of
the point of interest since the incident ions appear to be
moving as a beam. Therefore, if the satellite is rotating or
"tumbling" about an axis parallel to the cylinder axis, satel-
lite instrumentation will record an ion flux varying from zero
at the rear to a maximum value at the front. «+hen the ion beam
intercepts a satellite at plasma potential, the ion flux to the
front surface can be expected to be proportional to the cosine
of polar angle 8. This dependence means that at the very front
of the satellite, the ion flux is at a maximum; the flux decreases
until at a right angle to the flow, the flux is zero and remains
zero over the entire back surface of the satellite. When the
satellite potential is made negative, the ion flux not only
increases on the frontal area but also is finite in that part

of the rear where the ions intercept the satellite. This ad-
ditional collection area grows as the satellite is made more

negative.
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Figure 3.6 shows the ion flux Ji (normalized by the
incident flux ug of the beam) as a function of the polar angle
€. The ion flux at zero satellite potential is a cosine func-
tion. The line does not extend to n/2 (i.e., 1.57) radians
because in the computer program the trajectory spacing must
be extremely small for accurate determination of the angle
where the ion flux becomes zero (the grazing angle). Extra-
polation of the obtained results, however, shows that as ex-
pected the grazing angle is n/2 radians. At a satellite poten-
tial of -10, the resulting ion flux is similar to a cosine
curve displaced by a>positive bias. The figure shows that the
extrapolated grazing angle is shifted from a right angle to
one which lies in the rear region of the satellite. The inte-
grated ion flux is the ion current; hence, in this figure
that portion of the increase in the ion current due to the ad-
ditional ions attracted to the front of the satellite can be
distinguished clearly from that portion due to the finite
thickness of a cylinder satellite.

Figure 3.7 shows the ion flux to a cylinder satellite for
a variety of satellite parameters. 1In all cases, the ion flux
has an approximate functional dependence on polar angle in the
form of an incremented cosine function. This general functional
form has been observed on a rocket launched in the lower ionos-
phere (220-500 km).(ll) The ion flux, measured by a small probe
mounted in the body of the rocket, has a zero value when the
probe is in the far back area of the rocket. The polar angle
at which the zero ion flux begins is estimated to be x~ 130°.

In addition, the polar angle is zero at the point where the

ion flux is a maximum. The shape of the ion-flux curve as a
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function of angle is remarkably close to that of an incre-
mented cosine function.

Influence of satellite radius on ion current. The satel-

lite radius has an important effect on ion collection by satel-
lites. Of course, the larger the satellite radius, the larger
the ion current it collects. However, the normalized ion cur-
rent Ii does not depend directly on the variations in radius
since the normalizing "ram" current is proportional to the
satellite cross-sectional area. Nevertheless, the normalized

. Since

at
the attractive electric field of a satellite with negative po-

ion current is dependent indirectly on the radius r,

tential can extend over a distance of the order of a few Debye
lengths in the vicinity of the satellite, the ion collection
area is also of the order of a Debye length. For satellites

whose radius is large compared with the Debye length (rs >> 1),

the increase of the normalized ion current with increasi:; ion
attracting potential will be quite small. The overall ion cur-
rent will be large, but the relative contribution due to the
attractive potential will be small. On the other hand, for
satellites whose radius is small compared with the Debye

length (rs << 1), the attracted ion current will be quite large

when compa:zd with "ram" current.

Figure 3.8 shows that the rate of growth increases as the
half-width of the plate satellite is made progressively smaller.
Note that the curve for the parameter roat™ 25 extends to a
satellite potential of only -15. At a more negative potential
on the "large" satellite, some of the ions, influenced by the
electric field in the wake for an unusually long time, reverse

their trajectories. In this case, the calculation is terminated.
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The results indicate that the ion current collected by a "large"
satellite (most real ionospheric satellites are "large") is
almost entirely independent of the ion-attracting satellite
potential. The ion current is essentially the "ram" current
and is dependent only on the cross section and speed of the
satellite. (The number density and electron temperature de-
pendence appear indirectly through the Debye length.) For
satellites of "moderate” sigze (rsat< 10), however, the ion cur-
rent has a significant dependence on the potential, as can be

seen in Fig. 3.8.

The significance of parameter %KE‘ The ion current col-
lected by the satellite is a function not only of the satellite
parameters but also of the ion parameters. Both the ion-mass
ratio and the initial ion velocity influence the development
of the ion-flow field but not in a unique and individual manner.
Rather, the flow field is dependent on the ion kinetic energy,
and only through this single parameter do the ion mass and velo-
city influence the trajectories., 1In fact, the orbit eguation
(i.e., Newton's equations without the time variable) indicates
that the trajectory of a particle in a conservative force field
is dependent only on the initial position, direction, and energy
of the particle. The velocity along the trajectory, however,
does not depend only on these three initial conditions; the
velocity of a light ion is, of course, greater than that of a
heavy ion if both ions have equal initial energy. Since the
problem is aésumed to be steady, only the path of the ion and
not its velocity along the trajectory determines the ion density.
Hence, the ion kinetic energy is the unique ion parameter on
which the flow field (and, consequently, the potential field)
depends.
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The fact that the trajectory is not dependent on the ion
mass and initial velocity except by way of the initial energy

can be deduced by introducing scaling relations.(33)

However,
the argument is heuristic in nature, and, as a result, not so
satisfactory as a direct proof. A laboratory experiment which
was designed to measure ion current to a body in an environ-
ment simulating the ionosphere was used to check the validity

(32)

of the ion kinetic energy assumption. The results indi-
cate that the assumption is correct within the accuracy of
the experiment.

As a check on the numerical accuracy of the computer pro-
gram, a sample case was run to test the ion energy assumption.
For this case, the ion mass was increased by a factor of 16,
and the satellite velocity was decreased by a factor of 4 in
order to insure that éKE would remain donstant. The ion cur-
rent, a sensitive variable in the problem, was found to remain
independent of the ion mass and velocity when the ion kinetic
energy was constant. Hence, it was proved that it is sufficient
to present results as a function of the ion kinetic energy EKE
rather than both the ion-mass ratio B and the satellite velocity
u_.

s
Influence of ion kinetic energy on ion current. Figure 3.v

shows tha influence of EKE on the ion current as a function of

potential for a plate satellite. Because of the usual normali-
zation, the ion current at plasma potential is independent of

EKE' However, the ion current at negative potentials is depen-~

dent upon the "stiffness" of the ion trajectories. As a result,

the rate of growth of the ion current decreases with increasing

Lol

EKE'
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2, Electron Current

The ion current collected by satellites having been dis-
cussed thoroughly, it is now appropriate to consider the elec-
tron current., Fortunately, the solution for the electron cur-
rent is considerably simpler because of the inherent assumptions
made about the electron distribution function. It has been as-
sumed that since the thermal speed of the electrons is an order
of magnitude greater than that of the satellite, the electron
distribution function is Maxwellian. Then the normal electron
flux per unit area at the satellite surf;ce is Neeée/4 which
in dimensionless units becomes Je= (2m) ne. If the Boltzmann
factor is substituted for ng. then it follows that the dimension-
less electron current Ie collected over the satellite surface
area S is

I %

e

i

SJe = (2n)~ ).

S exp(crsa

t (3.1)

For example, the surface area of a sphere is 4nr§at: for a disk,
the surface area is twice the cross-sectional area, i.e., Z"rsat‘
since electrons are collected from both the front and back sur-
faces.

3. Net Current

Approximate value of floating potential. Since the elec-

tron current collected by a satellite at plasma potential is
much greater than the ion current collected, the satellite
acquires a negative charge. The negative potential at which
the net current is zero (i.e., the satellite "floats" elec-

trically in the plasma) is called the floating potential. It
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is important to determine the floating potential of satellites
since any instrumentation which is grounded to the satellite
will acquire this negative potential with respect to the sur-
rounding plasma.

A good estimate of the floating potential can be made by
assuming that the ion current is approximately equal to the
"ram" current Iio when the satellite is at the floating poten-

tial. In dimensionless units, the "ram" current is

I. = u A , (3.2)

where As is the cross-sectional area of the satellite. By

setting (3.1) equal to (3.2), the potential Cen

¢ may be ob-
(2)

tained;

In[ (2 E A
o = 1n[ (2m) u s/S].

sat (3.3)

In the case where the satellite is a plate or a disk, the ratio

of the cross-sectional area to the total surface area AS/S is 2,

For example, if the satellite is at an altitude of 1000 km where
E = 12 and the dominant ion is helium (8 = 7344), then u_=.0571.
At these values of the parameters, the floating potential Cea

obtained from Eq. (3.3) is -2.64.

t

Exact value of floating potential. The floating poten-

tial can be obtained more precisely by including in the cal-
culation the dependence of ion current on the satellite poten-
tial. Since the floating potential is negative, the collected
ion current is greater than the "ram" current. As a result,
the floating potential can be expected to be not quite so nega-

tive as -2.64, the originally estimated value.
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Figure 3.10 shows both the ion current and the total
current collected by plate satellite (which is one Debye
length in half-width) as a function of satellite potential.

As above, the ions are assumed to be helium and to have a kine-
tic energy of 12. Both the total current and the ion current
have been divided by the ion "ram" current Iio in order to
maintain consistency with the previous figures showing ion
current. The floating potential, obtained by setting the

total current equal to zero, is -2.52. This computed value

of the floating potential is about 5% less than the estimated
value and represents the correction obtained when the ion cur-
rent is calculated as a function of potential. The logarithmic
dependence of the floating potential on such corrections re-
duces their effect. As a result, further calculations of
floating potential for changes in the parameters will not
differ significantly from the case shown. In this figure,

the current goes off scale when the satellite potential ap-
proaches zero. The insert in this figure shows the total
current on a reduced scale over a range of satellite poten-
tial from zero to -10, Notice the extremely large contribu-
tion made by the electrons when the satellite is at plasma

potential.
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C. Satellite Drag Due To Ionospheric Plasma

The dominant component of plasma drag. The ionospheric

plasma flowing toward the satellite transfers part of its
momentum to the satellite. The direction of the net momentum
transfer is opposite to that of the satellite velocity; hence,
a net drag acts upon the satellite. In the lower ionosphere,
where the plasma density is much less than the neutral-particle
density, the plasma drag is much smaller than the neutral-parti-
cle drag. However, in the upper ionospheré (above 1500 km),
these two are comparable,

The component of the plasma drag due to electrons is negli-
gible since the light electrons have a thermal velocity which
is much greater than the satellite velocity. As a result, if
the potential field about the satellite is monotonic, the net
momentum transfer to the satellite by the electron flux (which
is uniform over the surface of the satellite) is zero. Further-
more, if the potential field is not monotonic and the electron
flux is greater on one side of the satellite than on the other,
the resulting electron momentum transfer will remain extremely
small in comparison with the ion momentum transfer because of
the large ion mass ratio. Therefore, only the ion component
of the plasma drag need be considered.

Lower and upper limits of plasma drag. The basic compon-

ent of the drag arises from the momentum transfer of those ions
which are swept up by the satellite. 1In keeping with the ter-
minology above, the drag of the swept-up ions is called the
“ram" drag. It is assumed that the ions which intercept the

satellite surface are neutralized. After neutralization, the
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ions are emitted diffusely or they are reflected specularly. The
momentum transfer of the diffusely emitted particles is propor-
tional to their thermal velocity which in the case of perfect
accommodation is proportional, by definition, to the square root
of the satellite temperature. Depending upon its location and
its internal heat sources, the satellite can have a temperature
of several hundred degrees Kelvin. In fact, the surface itself
can be at different temperatures depending upon whether it is
facing the sun., As a lower limit for the satellite temperature,
absolute zero is assumed. At this temperature, the reemitted
particles have no momentum and do not contribute to the drag.
Therefore, a satellite which diffusely reflects ions with zero
velocity has the lowest possible plasma drag.

In order to obtain an upper limit to the momentum transfer-
red by the neutralized ions, specular reflection must be considered.
The surface is assumed to be a perfect mirror of momentum, i.e.,
the component of particle velocity tangential to the surface af-
ter reflection is equal to that before reflection,and the normal
component after reflection is equal to and opposite that before
reflection, The relative kinetic energy of the specularly re-~
flected ions, equal to that of the incident ions, is equivalent
to a temperature of lO4 OK, at least. Since this equivalent
temperature is much larger than the temperture a satellite could
have under any conceivable ionospheric condition, the momentum
transfer by specularly reflected particles is much larger than
that by diffuse reflection and is, therefore, an upper limit.

The actual surface interaction of the incident ions is not
known exactly. Laboratory experiments simulating both satel-

lite surfaces and ionospheric conditions indicate that the
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interaction is a mixture of both diffuse and specular reflec-

(42)

tions, with the diffuse type probably being dominant. The

coefficient of the mixture (known as an accommodation coefficient

in rarified-gas theory) is defined as(42)

pi—pr
pi—ps

=

r

where p denotes the normal momentum flux and the subscripts i
and r denote the incident and reflected components. The term

=8 is the normal momentum flux of the gas if it were diffusely
reflected from the surféce at a mean thermal speed corresponding
to the surface termperature. The coefficient is strongly de-
pendent on the angle of interception; of course, the momentum
transfer from the diffuse component is dependent on the satel-
lite temperature. Since the mixture coefficient cannot be as-
sumed, drag data will be presented for both extremes of the sur-
face interaction, namely, the lower and upper limits correspond-
ing to diffuse reflection with zero velocity and to specular re-
flection, respectively. Incidentally, the lower-limit case is
equivalent to the case of no reflection whatsoever. 1In this
case, the ions would accrete on the satellite surface and even-
tually coat it.

Normalization of drag results. If ions at the satellite

surface are assumed to undergo diffuse reflection with zero
velocity (indicated by the subscript "dr"), then the change in
ion velocity at the surface is simply ug when £he satellite is
at plasma potential. Hence, the "ram" drag in dimensionless
units is equal to BuszAs. For clarity of presentation (as

discussed previously), the net drag obtained henceforth will
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be normalized by the "ram" drag BuiAs. As a result, the nor-

malized drag D . of a satellite at plasma potential is approxi-

mately unity. dIf the ions undergo specular reflection (indi-
cated by subscript "sr") at the surface of a plate or disk
satellite, the velocity change is 2us; the resulting normalized
drag Dsr is approximately 2. For a real case where ions under-
go bhoth diffuse and specular reflection, the normalized plasma
drag of a plate or disk satellite at plasma potential will lie
somewhere between the lower and upper bounds of 1 and 2.

Approximate draq for diffusely reflective satellite. When

the satellite potential is negative, ions are accelerated to-
ward the satellite, and those trajectories which intercept near
the satellite edge are bent inward. The resulting drag is a
complicated function of the angle of interception, the speed

at interception, and the total number of ions which intercept.
For the case of diffuse reflection, however, the drag due to

intercepted ions can be obtained easily. If the region sur-

rounding and including the satellite is considered to be a
"black box," the horizontal momentum transfer to this box is
the difference in momentum of the intercepted ions after they
intercept the satellite and before they enter the box. The
momentum after interception is zero, and the momentum before
entrance is BuiAi, where Ai is the area of interception in the
free-streaming region outside the "black box." Hence, the
normalized drag Dér (due to intercepted ions which are dif-
fusely reflected) is equal to the normalized ion current col-
lected by that satellite, i.e., D' = Ii‘ This equality holds

dr
for all satellite bodies and ionospheric conditions.
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Additional electric drag. An additional component of

drag, however, arises from those ions which are deflected

by the electric field surrounding the satellite but do not
intercept the satellite. This component is called the elec-
tric drag since, in a sense, it is the pressure of the elec-
tric field on the satellite. Although the electric drag is
generally smaller than the drag of the intercepted ions, it

is not insignificant. In order to calculate the electric

drag, the momentum of those ions which miss the satellite is
determined both before they enter the disturbed region and
after they leave it. Since the potential field is conserva-
tive, the energy of the deflected ions does not change; however,
the vertical velocity of the departing ion is not zero, and the
horizontal velocity is less than that of the incoming ion. As
a result, a net loss of momentum to the satellite arises. For
the case of diffuse reflection, therefore, the total drag is
the sum of the drags of the intercepted and deflected ions.

Increase in drag of specularly reflective satellite. For

the case of a satellite which reflects ion specularly at the
surface, another component of drag arises (in addition to the
electric drag). Consider an ion which undergoes acceleration
toward a negatively charged satellite and eventually inter-
cepts it. As the ion is being accelerated, it exerts an equal
and opposite force on the satellite and therefore, accelerates
the satellite (a negative drag). At the point of impact, the
ion gives up its additional momentum to the satellite. If the
ion is reflected diffusely, the negative drag at the time of
ion acceleration is equal to the additional drag at the time of

impact; hence, the velocity change along the trajectory need
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not be considered, On the other hand, if the ion is reflected
specularly, the transfer of momentum at ion impact not only
compensates the negative drag but also gives toAthe satellite
an additional positive drag equal in magnitude to the nega-
tive drag. Hence, when a specularly reflective satellite is
ion attracting, the increase in drag due to intercepted ions
arises from both the increase in number and velocity of inter-
cepted ions.

Approximate drag for specularly reflective satellite., 1In

order to calculate the drag for a specularly reflective satel-
lite, the ion velocity at the point of satellite intersection
must be known. If the trajectories of the intercepted ions
are assumed to be straight, then the approximate drag of those
ions on a plate or disk satellite can be calculated. Use of
the energy conservation law gives the horizontal ion velocity

at the surface after impact as

B Ak
/8)° = u (1l - o, SByg) y

where S is negative. Hence the transfer of momentum to

t

. . - kK
the satellite is us[l +(1 - msat/EKE) J. If the number of
incident particles is assumed proportional to the normalized

ion current Ii' the resulting normalized drag is

-~ %
= Ii[1 +(1 - msat/EKE) J.

D'
=34
The factor contained in the brackets represents the approxi-
mate increase in drag of a specularly reflective satellite over
that of a diffusely reflective one. Of course, the electric
drag, as well as the effect of non-horizontal trajectories, is

omitted from the drag estimate Dér'
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Drag for both moderate and large bodies. Figure 3.1l

shows the normalized drag of a plate satellite (one Debye
length half-width) as a function of satellite potential.

The cases of diffuse and specular reflection (D . and Dsr’

d
respectively) are shown. The dashed lines are the estimates
for the drag Dér and Dér' The difference between the esti-

mated drag Ddr and the actual drag Ddr

ting satellite is equal to the electric drag. Similarly, the

for a diffusely reflec-

difference between Dér and Dsr is equal to the same electric
drag plus a small correction for the bending of the ion tra-
jectories at the point of impact.

The drag for a large satellite as a function of potential
is shown in Fig. 3.12. For the diffusely reflecting satellite,
the drag remains approximately constant as the potential is
made more ion attractive., Even the electric drag is very small
compared to the “"ram" drag. For the specularly reflecting
case, however, the increase in drag due to the increase in the
ion velocity has a sizable effect. Hence, for large, specularly
reflecting satellites, the normalized drag depends strongly on
the potential, while normalized ion current collected by large
satellites depends weakly on the potential. Maslennikov and

(23)

Sigov calculated the drag of diffusely reflective spheres,
cones, and disks; they did not consider the case of specular
reflection. Where their results overlap with those presented

in this thesis, the agreement is excellent.
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D. Structure of the Satellite Wake

1. The Near Wake

Definition of near wake. When the satellite intercepts

ions impinging on it from the front, an ion-free region is cre-
ated in the satellite wake. The ions are assumed to have zero
temperature, and if the satellite potential is ignored, then
the ions continue their straight trajectories and do not fill
in the wake. The electrons, however, having a thermal velo-
city which is an order of magnitude greater than the satellite
speed, abound in the region directly behind the satellite.
Hence, the wake region has a net negative charge density, and
an electric field arises. The direction of the field is such
that it reduces the electron density and attracts the ions
streaming past the satellite into the wake. The ions adjacent
to the ion-free region respond to the attractive field of the
wake, and their trajectories are bent toward the wake. Ions
are attracted into the wake from both the top and bottom edges
of the ion-free region and meet on the axis of symmetry. 1In
the region extending from the satellite to the point at which
the first ion trajectory intercepts the axis, the wake is com-
pletely ion free. The ion-free region is shaped roughly like
a triangle where the base of the triangle is the rear of the
satellite and the two sides are the trajectories of the ions
which have grazed the top and bottom edges of the satellite,
Length of near wake. An order-of-magnitude estimate of
the length of the triangular ion-free region can be made if
it is assumed that the electric field in the wake is a unit
of potential (equivalent to the electron thermal energy)

acting over a Debye length. In dimensionless units this
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electric field corresponds to unity. (Since in actuality

the field magnitude is somewhat less, this estimate for the
ion-free wake length is a lower bound.) The time necessary
for an ion under the influence of a constant force to travel

from the edge of the satellite across the wake to the axis of

symmetry is

. % k
(28r__ /B)® ~ (28r__ ) .

twake= sat t

During that time, the ion travels downstream with an approximate
velocity u_; the resulting distance in the x direction is

1, n 1

— - o 2 = 2
wake ustwake (2“usrsat) Z(EKErsat) ’ (3.4)

For example, for a plate satellite with a half-width of a Debye
length and an ﬁKE of 12, the length of the ion-free portion
of the wake is at least 7 Debye lengths.

Figure 3.13 is a plot of the ion-flow field showing rep-
resentative ion trajectories. In the figure, the plotted tra-
jectory which is drawn first into the wake is not the grazing
trajectory. In fact, the grazing trajectory is not shown here,
since the trajectories selected for display have approximately
equal intervals between them. However, examination of the re-
sults indicates that the grazing trajectory crosses the axis
of symmetry at about 12 Debye lengths downstream of the satel-
lite, a length which is of the same ordeér of magnitude as the
estimated value.

Figure 3.14 is a contour plot of the potential field.

In most of the wake, where the potential lines are parallel
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to the flow direction, the resulting electric field is
perpendicular to the flow direction and attracts the ions

into the wake. The magnitude of the electric field is approxi-
mately 0.4 unit of potential per Debye length. Since this
value is considerably less than unity, the fact that the esti-
mated length of the ion~free region is smaller than the actual
length is not unexpected.

Influence of satellite potential on length of near wake.

If the satellite has a negative potential, the y velocity of
the ions flying past the satellite and into the wake is in-
creased from zero by the ion-attracting field surrounding the
satellite. As a result, the grazing and adjacent ions cross
the axis of symmetry sooner than they would if the satellite
were at plasma potential. Consequently, the ion-free region
of the wake is considerably shorter. Figures 3.15 and 3.16
show the ion-flow and potential fields, respectively, of a
plate satellite. The parameters are the same as those in the
previous pair of figures, except that the satellite potential
is -5 in units of electron thermal energy.

Near wake of large satellite. When the satellite radius

is made larger, the resulting ion-free region also becomes
larger. Since the ions must travel a considerable distance
from the edge of the satellite to the axis of symmetry, they
go a considerable distance downstream before crossing. The
estimate of the ion-free wake length given by Eg. (3.4) pre-
dicts that the length is proportional to the square root of
the satellite radius. Hence, when the satellite radius is
large compared to a Debye length, the near wake region is also

large. The region is filled solely by electrons and, if the
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electron density in this region were ccmparable to the ambient
value, the resulting electric field would be'enormous. There-
fore, inside the large ion-free region the dimensionless poten-
tial has a negative value which is a few times greater than
unity. The resulting electron density is then only a small
fraction of the ambient value, The large region which is ion
free can be considered to be nearly electron free as well,
The net charge density is approximately zero, and in this case,
Poisson's equation which governs the potential degenerates to
Laplace's equation,

One consequence of the zero charge density in the
region directly behind the satellite is that the electric
field can extend for many Debye lengths downstream. For
example, if the satellite is not at plasma potential, the
extent and decay of its potential into the plasma-~free re-
gion is dependent more on the size of the satellite than on
the Debye length. Another way to understand this phenomenon
is to consider the Debye length a function of the local elec-
tron density., In the region where the electron density is
very small, the "local" Debye length is large; hence, the
electric field extends over a region which although large is
only of the order of a few "local" Debye lengths.

Figures 3.17 and 3.18 are plots of the ion-flow and po-
tential fields for a plate satellite having a half-width of
25 Debye lengths, In order to shorten the plasma-free region
of the wake and, consequently, to decrease the required computer
memory, the value of the ion kinetic energy is set at 6 (occur-
ring at an altitude of 1500 km)., For the same reason, the
satellite potential is set equal to -5. The contour plot of

potential in Fig. 3.18 shows quite clearly the difference
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between the plasma behavior in the front of the satellite

and that in the back. Within a few Debye lengths of the front
surface, the value of the ion density is nearly the ambient
value; the electron density is much smaller. Hence, a net
positive charge density occurs which shields the negative
potential of the satellite. In the theory of electrostatic
plasma probes, this shielding region is called a sheath. As
is characteristic of sheaths, the lines of constant potential
are dense and are parallel to the body surface.

In the wake, however, a recognizable sheath does not
exist. The net charge density is nearly zero in the region
directly behind the satellite, and the potential field of the
satellite is not shielded by a sheath. As a result, the lines
of constant potential extend into the wake over distances which
are comparable to the body radius rather than to the Debye
length of the problem. The satellite wake has a behavior which
is fundamentally different from that at the satellite front.
Therefore, only those theories which take into account the
sizable variations of the ion and electron densities in the
wake are adequate to describe the potential and ion-flow fields

“there,
2. The Midwake (Planar Geometry)

Definition of midwake. It has been established that the

self-consistent electric field attracts the free-streaming ions
into the wake from both the top and bottom edges of the wake,.
These two streams of ions meet on the axis of symmetry. Since
the problem is assumed to be collisionless, the two streams

interact with each other only by means of the electric field.

108



The ion density in the area where the streams intersect is
simply the sum of the ion density of each stream. If the
satellite has axially symmetric geometry, the geometric
factor makes the ion density of each stream infinite on
the axis. For that reason, the discussion of the axially
symmetric case is deferred until later.

Consider the wake of a satellite which is of the planar
class and whose half-width is not large compared to a Debye
length. In the wake region where the two ion streams cross
each other, the ion density increases but does not reach the
ambient value. Consequently, a weak electric field exists
here. This partially neutralized region, called the midwake,
borders the ion-free near wake. Across the border a sharp
gradient occurs in the ion density. Hence, the potential
field of the midwake is significantly different from that of
the near wake, and the regular shape of the potential lines
is perturbed.

Formation of ion beams. The perturbation in the field

of the midwake influences most strongly the ions wuich first
cross the center line of symmetry (the border ions). As

the two groups of border ions (from the top and bottom edges

of the satellite) pass through each other, they undergo fo-
cusing by the perturbed potential field. When the groups re-
appear on the other side of the line of symmetry, their den-
sities are above the ambient, and they behave as two narrow
beams of ions. Since the two beams are coherent for a remarkably
long distance, they are quite distinct from the two broad streams
of ions which cover the remainder of the midwake. The ion beams
are at equal angles with respect to the line of symmetry and

form a V-shaped region of enhanced ion density in the midwake.
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In Fig. 3.14, the distortion of the potential field
which forms the ion beams can be seen as a perturbation of
the lines of constant potential; see for exampie the line
corresponding to -0.05. 1In the corresponding trajectory
plot (Fig. 3.13), the beam cannot be shown because it is
extremely thin and difficult to plot. However, in a cor-
responding contour plot of the ion density (Fig. 3.19),
the outline of the beam can be seen clearly as a line of
constant ion density which has a value greater than the
ambient density.

When the beams reach into the free-streaming ions,
their density is superimposed on the nearly neutral
plasma background and disturbs the'region. Since the two
beams have an excess of ion charge, an electric field
arises. The effect of the field on the beams increases
their widths and decreases their density as they move into
the free-streaming ions. Finally the beams diffuse until
they are only a sméll perturbation superimposed on the back-
ground plasma, and the electric field vanishes.

Enhancement of ion beams by a satellite potential. The

process which creates the beams can be enhanced by application
of a negative satellite potential. Since the electric field
is strongest in the region adjacent to the satellite, those
border ions grazing the satellite are given an initial y velo-
city before they enter the wake field. As a result, at the
point of beam formation, the vertical velocities are higher,
and the angle between the beam and the flow direction is
larger. Furthermore, the beams are broader and have a higher
density; therefore, they penetrate farther into the free-

streaming plasma and disturb a larger region. Figure 3.20
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shows the ion density for the case where the satellite po-
tential is -5. For this case, a contour plot of potential
and an ion-flow field have been shown already in Figs., 3.15

and 3.16.

Absence of ion beams in case of large satellite. Now

consider the case of a large satellite where the wake is
very wide. In this case, the attracted ions undergo an
acceleration which is toward the axis of symmetry and which
extends over a long distance., As a result, the ion density
in the midwake is small when compared with the ambient. (In
the far wake, of course, the ion density slowly rises to the
ambient density.) In the region where the ion streams inter-
sect, the density, as usual, doubles. However, since the
density gradient across the border is small, the potential
field is not perturbed, no focusing of ions occurs, and no
beams are created., In Fig. 3.18, the contour plot of po-
tential for a large satellite (rsat= 25) is shown. Strong
perturbations in the potential lines are not present, The
sudden increase in ion density and the formation of two
beams, characteristic of satellites of moderate size, are
entirely absent in thiis case. Otherwise, the behavior of
the wake is similar to the previously discussed case.

Comparison of prior work with respect to ion beams,.

(2)

Al'pert et al. predicted a V-shaped region of enhanced
ion density in the wake. In their solution, the electric
field was treated as a perturbation to the motion of

(28)

thermal ions. Taylor also predicted the occurrence of
the V-shaped region and attributed its formation to the
border ions which pass near the top and bottom edges of

the satellite. Taylor's solution was obtained under the
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assumption of thermal ions and a first-order approximation
of the electric field. The solution of Maslennikov and Sigov
(21—23), for the potential and ion density contain a distor-
tion which can be attributed to regions of enhanced ion den-
sity off the axis of symmetry. By making use of the method
of solution described in the present study, the V-shaped
region of enhanced ion density was investigated to determine
the influence of satellite parameters on it. Since the
beams were found in all solutions (except in the case of
large satellites) and since ion thermal motion was ignored,
the electric field is clearly responsible for the formation
of the beams. Furthermore, the work of the previous in-
vestigators indicates that consideration of the ion thermal
motion in the problem does not destroy the coherence of the
beam trajectories andg, hence, the formation of the beams.

In spite of the large body of evidence for the existence
of the beams which numerical investigations have produced,
the possibility exists that the solutions do not accurately
describe the flow of ions around satellites. Observations
of ion density in the vicinity of satellites have not con-
firmed the existence of off-axis regions of enhanced ion

(11)

However, in a laboratory experiment simulating
(34)

density.
the ionospheric flow around a body, Hester and Sonin
obtained results which strongly indicate that two ion beams
exist in the wake of moderately sized bodies. In order to
determine the ion-flow field, these investigators used a

cylindrical ion probe which can resolve the flow direction
of an ion beam to within a few degrees. The probe, when

placed on the axis of symmetry in the wake of a plate,
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revealed the presence of two ion beams crossing the axis.
Furthermore, plots of ion density show the projection of

the beams into the far wake for a remarkably 1bng distance.
Since the ions in the experiment of Hester and Sonin have
almost no thermal motion, the results from their work can

be compared with the numerical solution in the present study.
For a small plate in the present case and a small cylinder in
their case (with all other parameters identical--E = 10,

KE

r = 0,21, Cont = -9), the half-angle of expansion of the

VfZEaped region Es 0.35 and 0.34 radians, respectively. This
close agreement between a laboratory experiment and these
computer calculations gives added confidence to the actual
existence of ion beams behind a satellite.

The numerical results from the present study suggest
that ion beams behind a satellite have not been observed
because the satellites previously examined had radii much
larger than a Debye length. Moreover, the results of Hes-
ter and Sonin indicate that for a body of radius 19.5, the
ion beams are not created and only a slight enhancement of
ion density exists along the edge of the wake. A small or
moderate body size is apparently necessary to insure the
existence of the ioﬁ beams.

Extension and expansicn of midwake. The beams themselves

make only a minor contribution toward the neutralization of

the electron-rich midwake. In order for the wake to be even
partially neutralized, a large number of ions must be attracted
into it. However, as these ions are drawn into the wake, the

ion density decreases to a value less than the ambient. Hence,
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the excess electron density in the wake is only partially
neutralized, and the wake remains slightly disturbed.
Furthermore, as the ions are removed from the surrounding
region to neutralize the wake, that region itself becomes
electron~rich., The disturbed region, therefore, grows out-
ward as it proceeds downstream.

It must be remembered that the problem is collisionless,
and, therefore, the disturbance is not damped by collisions.
Once the collisionless plasma is disturbed, the disturbance
persists until the variations in the electron and ion den-
sities and the resulting electric field are distributed over
a large volume of plasma. In fact, the present investigation
has shown that the variations persist as far downstream as
the solution has been extended. (See Appendix B for a dis-
cussion of the influence of the boundary location on the
solution.) The disturbance moves in the vertical direction
as well as the horizontal, and, as a result, the region of
disturbance grows with the extension of the wake. However,
the magnitude of the electric field becomes smaller furtherx
downstream, and likewise the ion and electron densities
approach their ambient values. The energy associated with
the disturbance remains roughly constant along any vertical
line, but it is spread over an increasingly larger distance.
Thus, the two-dimensional character of the problem provides
a mechanism for damping the disturbance. The damping is
fundamentally unlike collisional damping, but, nevertheless,
it is an effective means of restoring the disturbed plasma

to ambient conditions.
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It should be emphasized that the disturbance is a steady-
state phenomenon with respect to the satellite. Such possible
time-dependent phenomena as electromagnetic and Alfven waves,
the "two-stream" instability, or Landau damping have not
been investigated as possible sources of damping. Labora-
tory experiments designed to measure the ion density in body

wakes have shown that the wake is steady—state.(32—34)

Hence,
the consideration of the time-dependent processes is not
expected to contribute additional insight into the understand-

ing of that portion of the wake which is strongly disturbed.
3. The Midwake (Axially Symmetric Geometry)

High ion density on wake axis. The planar geometry

having been thoroughly discussed, it is now appropriate

to consider the axially symmetric geometry. As discussed
in Chap. II, the ion density as a function of the flux tube
width [Eg. (2.9)] contains a factor which is inversely pro-
portional to the radial distance of the point of interest.
This geometric factor takes into account the compression of
the flux ring as the representative trajectory approaches
the axis of symmetry. On the axis itself the ion density
is singular. Of course, the singularity is not expected in
reality; even a slight thermal motion in the ions destroys
the coherence of the flux ring near the axis. Nevertheless,
high ion densities are expected in the vicinity of the axis
since the shape of a satellite of the axially symmetrié

class is an efficient means of focusing ions onto the axis,
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The singularity in the ion density which occurs on the
axis has been avoided in the solution by choosing grid points
which do not lie on the axis. If the ion température is
neglected, the grid points can be no nearer to the axis than
0.1 Debye lengths. At this radial distance the ion density
arising from those trajectories which cross the axis may
be as large as ten times the ambient density. The result
of keeping the grid points off the axis is achievement of
high ion densities while avoiding singularities and neglecting
ion temperature. Under these assumptions, the solution is
expected to approximate the behavior of axially symmetric
satellites.

Spatial oscillations. The near wake of an axially

symmetric body is ion-free as it is in the case of a planar
body. Similarly, in the region bordering the ion-free re-
gion, two ion streams begin to neutralize the electron-

rich wake. Furthermore, near the axis where the streams
intersect, the ion density increases rapidly. Since the
geometry of the problem is axially symmetric, the wake in the
neighborhood of the intersection becomes extremely ion-rich.
The resulting electric field is in such a direction that it
opposes the arrival of more ions. The potential becomes posi-
tive, and further down the wake an ion-free region is created.
The field in that region is ion-attracting and the potential
is negative. The regions of negative and positive charge
density alternate down the wake, and their magnitude dimini-
shes slowly. Consequently, regions of ﬁositive and negative

potential are formed in the vicinity of the axis of symmetry.
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Since the magnitudes of the ion concentrations near the
axis can be very large, the electric field is much larger
than in the planar case. Hence, the wake ions are influenced
strongly by the field which is alternately attractive and
repulsive., Each wake trajectory undergoes a series of re-
versed deflections until it crosses the axis and is deflected
permanently out of the wake.

Since the axially symmetric satellite focuses the ions
to high values of density, spatial oscillations in both the
net charge density and the potential are characteristic of
this class of satellite. The clear distinction between the
ion-free near wake and the partially neutralized midwake in
the case of a planar body is not possible in this case. 1In
addition to the ion-free regions which occur many times on
the wake axis, ion-rich regions now appear. Hence, the
structure behind a planar satellite is fundamentally differ-
ent from the structure behind an axially symmetric satellite,
and the two cases must be considered separately.

Comparison of wake for two geometries. Figures 3.21

and 3.22 show the potential and ion-flow fields of a disk
satellite. The ion kinetic energy has been set equal to the
low value of 1.2 in order to enhance the formation of the
wake, The low value of éKE allows the ion to react more
quickly to the electric field; as a result, the interesting
behavior is contained in a relatively short distance. 1In
order to compare this case with a planar case, the poten-

tial field of a plate satellite is shown in Fig. 3.23., The
remaining satellite parameters are identical to the case shown
in Fig. 3.21., Note the series of alternating potential regions
in the former figure; note the complete absence of a complex

structure in the latter,
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CHAPTER IV: INFLUENCE OF A UNIFORM MAGNETIC FIELD

A. Equations and Methods of Solution

Planar geometry. If a uniform magnetic field is intro-

duced into the problem, the field will influence the motion
of the charged particles and, hence, the development of the
disturbed region around the satellite. Since the field is
uniform, the problem remains spatially two-dimensional when
the planar class of body shapes is considered. For the axial-
ly symmetric class, the magnetic field, although uniform,
would appear to have a changing direction with rotation of

the body. Even if the magnetic field were parallel to the
axis of rotation, the problem would not remain spatially two-
dimensional. The magnetic field would force the ions to move
in a direction perpendicular to both the field and the velocity
vector, and the resulting motion would not be independent of
the angle about the axis of rotation of the body. In this
case the third spatial dimension, angle, would have to be
considered. Hence, in order to keep the problem spatially
two~-dimensional in a uniform magnetic field, only the planar
class of body can be solved.

Modification of computer program. Since most of the

equations describing the physical behavior of the problem
remain valid in the magnetic field case, only a small por-
tion of the program must be changed. Poisson's equation is
applicable in the case of a steady and uniform magnetic field
as well as in the electrostatic case. Since the electron den-

sity is proportional to the Boltzmann factor,(lz)

that por-
tion of the program which employs Poisson's equation to solve

for the potential when the ion density is known can be used
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without modification in the magnetic field case. However,
that portion of the program which is used to calculate the
ion trajectories must be modified to take into account the
influence of the magnetic as well as the electric field on
the motion of the ions.

In the derivation of the pure electric interaction, the
force term of Newton's equation was set equal only to the

electric field. 1In dimensionless variables, from Eg. (2.10),

| -

= and G = - 1 2

F=-3 % 5y

where the vector F =(F,G,H) is the dimensionless force per
unit mass on the ion, and 8 = mi/me is the ion mass ratio.
H is the force per unit mass in the z direction and is zero
in the purely electric case.

If a uniform magnetic field is to be introduced into the
problem, the force term in Newton's law must be appropriately
modified. With the Lorentz force included, the force term
becomes (in the dimensionless units of Chap. II)

F = (E + ¥V X 5),

w [

(4.1)

where vector ; =(u,v,w) is the ion velocity and g is the
dimensionless magnetic field. The unit magnetic field which
allows the Lorentz force to be written in its simplest form
has a value Bo=(nome/eo)%. At this value of the magnetic
field, the electron gyrofrequency u§e=(eBo/me) is equal to

the plasma frequency wp.
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The "cold" ions acquire a velocity component in the z
direction due to the magnetic field. These velocities in
turn affect the ion velocity components in the x and y direc-
tions by interacting with the magnetic field. The magnetic
force, being considerably weaker than the electric force, is
taken in account through a correction to the ion trajectories.
Thus, the entire program for solving the electrostatic inter-
action of a satellite with the ionosphere can be used to solve
the case of the joint electrostatic and magnetostatic inter-
action. |

In this thesis, two cases will be considered: a mag-
netic field B =(B,0,0) parallel to the flow velocity and a
magnetic field B =(0,B,0) perpendicular to both the flow
velocity and the invariant z direction.

Parallel magnetic field. In component form Eg. (4.1)

is for a parallel magnetic field,

1
F=—E 3 G =
B

o™ |~

ruY. W o= L(m
(Ey+ BV); H = B(Ez Bw) .

Let E and B be constant over a small volume cell in the re-
gion of interest. At t = 0, let u = ug, Vo= v, and w = wo-
Then the velocity vector at time t is obtained by direct in-

tegration of Newton's equation:

u = (EX/B)t + u
v = (wo+ Ey/B) sin wgit +(vo- EZ/B) cos ubit + EZ/B,
w o=

(wo+ Ey/B) cos wgit +(vo— Ez/B) sin wgit - Ey/B,

where wgiz B/f and is the ion gyrofrequency in units of plas-

ma frequency.
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Since all gradients are zero in tle 2z direction, the
equations for x and y are obtained by integrating only the
equations for u and v and by setting x = X and y =y _ at

o
t = 0. Thus:

2
x X +u t+ E t /2B,
o o X

y yo—(l/wgi)(wo+ Ey/B)(cos uéit - 1)+(1/U§i)51n Ugit'

The equation for w is retained in order to determine the z
velocity at each point.

Over a small volume cell, the parameter mgit remains
small compared to unity. (Recall that uéi is the dimension-
less ion gyrofrequency and is less than the electron gyro-
frequency by a factor g). Hence, the trigonometric functions
can be expanded about the parameter ubit and can be replaced
by polynomials in powers of u it. If terms up to the fourth

order of ubit (i.e., (mgit)41 are retained, then the trajec-

tory equations are:

Xx=x+ u t + E t2/25,
fo) o) X
2,2 2 .2

w .t E 2 w .t
y =yt vt (4 _'—gi_ﬁ) * (Ei * ubiwo) g— (1 —-—%é—_)‘
(4.2)
In addition,
u?.tz wz.tz E wo.t
w o= wo(l - —gi——) - vo“éit(l _,_g%__ ) - El tCJE%“).

In order to determine the exit parameters for a cell, these

equations must be inverted and the time t, of the flight of

1
an ion through the cell must be obtained. If the exit wall of

the cell is defined by a vertical line x = X no difficulty

ll
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exists. The expansion (2.11) used in the pure electric field
case to determine tl as a function of Xo’ ' 1
can be used in the same manner to determine tlAin this‘case.

However, if the cell boundary is given by a horizontal line

u, E, and x = X
o bl

Y = Yo« then the equation is a fourth order polynomial in t
and cannot be solved by the original technique.

Rather than to attempt to invert Eq. (4.2) for y, and
obtain the exact time of flight across the cell, that time
can be approximated by neglecting the magnetic field. Then
the magnetic field effects can be estimated by using the ap-

proximate value for t and the value for t., again can be

1’ 1
determined by inverting a guadratic equation. The first

approximation for t., is given by

1

2
y =y * vot +(Ey/e)(tl /2).

Let this value of tl be ti. Now Vg is replaced by a

slightly different value
2
* = - (w *
vE = v (1 (mgitl) /617,

and Ey/@ is replaced by
2
= s - \ *
E;/S (Ey/B + Cqi wo)[l (ugitl) /127,
Ncw the equation for y, can be written as,
yi= v+ vxt, + (Ex/8) (t2/2).
1 o} ol y 1

This equation is a quadratic in tl and can be solved for tl

in the same manner as in the pure electric field case. When
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the value of wgit is much less than unity, then this value

1

of tl is nearly identical to that value of tl

been obtained if the fourth-order polynomial in tl had been

which would have

solved directly.

By tracing the ion trajectory from yolume cell to cell,
the entire trajectory is constructed from the small parabolic
segments spanning each cell. Since the ion velocity w in
the z direction is now being considered, the complicated heli-
cal motion which charged particles in an electric field under-
go is incorporated into the program, Regardless of the fact
that the ion velocity is being calculated for all three di-
mensions, the problem remains spatially two-dimensional. As
long as no spatial gradients are present in the z direction,
the problem is invariant in that direction.

Perpendicular magnetic field. When the magnetic field

is perpendicular to the direction of the ion flow and is
oriented such that B = (0,B,0), then the force term of New-

ton's law is, in component form,

F =

w |

1 1
(Ex—wB): G-BEy, H—-B(Ez+uB).

E and B are constant over a volume cell, At t =0, u-= u.
Vo=V, and w = we By integration of Newton's equation,

the dimensionless velocity vector is

= - - ] ' r .t - E ’
u (wo EX/B) sin ugit +(uo+ EZ/B) cos ugl Z/B
v = (Ey/B)t + Vo
w =

- S + E in .t + E /B,
(wo Ex/B) cos uglt (u0 z/B) s wgl x/

where wgi = B/B.
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In this case, the velocity component v parallel to the
magnetic field is independent of the magnetic field. The
velocity components u and w in the x and z diréctions, re-
spectively, depend explicitly on both the magnetic field and
the velocity W in the z direction. In this case with a
perpendicular magnetic field, the electric field EZ in the 2z
direction is not zero. Since the electric field is measured
in the satellite frame of reference, an induced electric
field arises from the motion of the reference frame through
the stationary magnetic field. This induced field is the
Lorentz transformation 6f the magnetic field and is Ez= uSB,
where ug is the satellite speed. If this uniform electric
field were ignored, the ions would not appear to stream past
the satellite as in the case where no magnetic field is
present; the ions would, in fact, circle the lines of magne-
tic field indefinitely.

The equation for the velocity component w in the =z
direction is retained since the x component u of velocity
depends upon it. The equations for u and v are integrated
in order to determine the locus y = y(x) of the ion trajec-
tory. At t =0, x = X, and y = Y- Then the trajectory

equations are

1l

x = x +(1/u ;) (iﬂo- E,_/B) (cos u; t = 1)+ (L/u ;) (u+ B, /B)

gi
x sin @¢_.t -(E_/B)t,
gi z

2
y Yt vot + Eyt /28.

If the electric field component E2 is set equal to the value

of the induced electric field usB and if the trigonometric
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functions are expanded about the small parameter mgit' the
trajectory equations become:

2 2 A 2 .2
Wt E .2 t
X+ [uo—(uo+ u,) —3—'—6 Jt +('é"' - wgiwo) 5 (1 - —g——’)

»
i

2
Yy =y, + vot + Eyt /28,

In addition,

2 .2 2 2
W it E W it
w o= wo(l - —g——— )+(uo + us)w (1 - —H“’“) +‘§” t@‘gg‘ ).

If the ion trajectory leaves the cell via the horizontal
wall defined by the line y = Yy then the time of flight tl
across the cell can be calculated by means of the expansion
given in Eq. (2.11]). On the other hand, if the ion leaves
via the vertical wall, then the time of flight first must
be estimated by neglecting the magnetic field. This esti-

mat tI is obtained by inverting the following equation:
X = x + u_t* +(E /B)(t*2/2).
o o1l X 1

The value for u is replaced by an altered value u; which
accounts for the influence of the magnetic field; similarly,
the value for EX/E is replaced by an altered value E;/B where

2
u; =u_ - (u_+ u) (w_. ti) /€,

o o s gi (4.3)

and
2
E;/B = (Ex/s - wgiwo)[l - (ubiti) /127.

It should be noted that the corrections to uo and EX/B are

small not only because wgit is small but also because u is
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approximately equal to u in value and opposite in sign.
Thus in Eq. (4.3) the term which contains the factor (uo+ us)
is small. Thus, the time of flight t. is obtained from the

1
modified equation

2
-— * *
X, = X + uotl + EX/B (tl /2) ,

With this value of tl, the values of y, u, v, and w are cal-
culated. These values of the exit parameters from one cell
become the values of the entrance parameters for the next
cell. As the ion moves from cell to cell, the entire ion

trajectory is constructed.
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B. Numerical Results

Depending upon the altitude and latitude,- the magnitude
of the earth's magnetic field in the ionosphere varies from
0.15 to 0.44 G. At an altitude of 1500 km, for example, where
the electron density is about 1.6 X 1010 m‘3, the dimension-
less magnetic field [in terms of the unit magnetic field
Bo = (heme/eo)%] is as high as 2., At this field value, the
gyrofrequency of an average thermal electron equals twice
the plasma frequency, and its gyroradius is equal to one half
of the Debye length. Since the ion gyroffequeney is less
than the electron gyrofrequency by a factor of the ion mass
ratio, the magnetic field influences the ion motion signifi-
cantly only when the satellite and its wake are very much lar-
ger than the Debye length and, therefore, when the ion time
of flight through the wake is of the same order of magnitude

as one ion gyroperiod.

Negligible interaction of ions with perpendicular mag-

netic field. When the magnetic field is perpendicular to

both the flow velocity and the invariant direction [i.e.,
B =(0,B,0)1], thé interaction of the cold ions with this
field is negligible when compared with the electric inter-
action. This is due to the fact that the‘change in the x
velocity of'the ions is small and, consequently, the cross
product of this velocity component and the magnetic field is
also small. The magnetic field, of course, does not influence
the motion of the ions in the y direction.

Using the method described above, the potential and ion-
flow fields around a satellite can be solved for the case of

a perpendicular magnetic field. The ionospheric parameters
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are set equal to typical values, and the magnitude of the
dimensionless magnetic field is increased from zero to a value
as large as 500. No significant changes in the potential or
ion-flow fields are observed. The change in the x velocity is
so small that the ion behavior is identical to that with no
magnetic field. Hence, it is reasonable to conclude that the
influence of a perpendicular magnetic field on satellite cur-
rent collection and wake behavior is negligible.

Interaction of satellite body with perpendicular mag-

netic field. A perpendicular magnetic field acts indirect-

ly on the ions by altering the satellite potential itself.
Along the invariant direction of a planar body, a constant
electric field is induced in the satellite reference frame.
If the satellite is a good electrical conductor, an equal
and opposite electric field which cancels the induced field
must arise in the satellite, As a result, a linear potential
gradient appears along the length of the satellite. Since
the satellite potential is part of the boundary condition for
the solution of Poisson's equation, the problem is no longer
invariant in the z direction. However, the induced electric
field in the z direction is very weak compared to the elec-
tric fields in the x and y directions, At a 1500-km altitude,
the dimensionless induced electric field Ez= usB is equal to
~ 0,04, Hence, the influence of E2 on the ion motion may be
neglected.

When the length of a planar satellite is much longer than
its half-width (e.g., an antenna), the total current to the
satellite may be obtained by integration of the ion and elec-

tron currents (per unit length) along the length of the
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(10)

satellite. Chu and Gross assume that the ion current re-
mains constant regardless of the satellite potential and that
the electron current is an exponential function of the poten-
tial. They obtained the potential distribution for which the
net current to the satellite is zero: The potential at one
end of the satellite approximates the plasma value and de-
creases linearly to a very negative value at the other end.
If their assumption concerning the constant ion current is
not made, and instead the more accurate values for ion cur-
rent presented in the previous chapter are used, the quali-
tative behavior of the antenna potential remains the same,
Since Chu and Gross assume too little ion current collected
over the entire antenna length, the overall antenna potential
is predicted to be slightly more positive than their estimate.
This correction to the antenna potential, however, is similar
to the logarithmic correction made for the floating potential
'in the previous chapter and is, therefore, minor.

Plasma drag and induction drag of a satellite. It should

be noted that the plasma drag arising from both the intercep-
ted ions and the electric drag of the antenna is not constant
along the length of the body. Since the satellite potential
is a linearly varying function, the plasma drag is greater
at the highly negative end than at the opposite end. Hence,
a torque is created which tends to rotate the antenna until
its axis is parallel to the flow direction.

The plasma drag on the antenna and che resulfing plasma
torque are distinctly different from the induction drag dis-

(10)

cussed by Chu and Gross. The induction drag is the force

which arises from the interaction between the net current flux
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along the length of the satellite and the perpendicular
magnetic field (i.e., the drag is equal to 3 x_g). How-
ever, the plasma drag occurs even if the antenna is a non-

- conductor with no current flowing along its length.

Influence of parallel magnetic field on ion flow. The
disturbed ion flow interacts with the magnetic field when
the field is oriented parallel to the flow direction. The
change in the horizontal ion velocity is not influenced by
the magnetic field, whereas the change.in the vertical velo-
city is significant and interacts directly with the magnetic
field. The ion gyroradius is inversely proportional to the
magnetic field and for a dimensionless magnetic field of
unity is many times larger than the Debye length. Hence,
for satellites which are many times larger than the Debye
length, the magnetic interaction with the ions is important.

The potential field for a large satellite,(rsat= 25) in
a parallel magnetic field (B" = 2) was calculated., The ions
had a mass ratio corresponding to that of hydrogen. It was
seen that only far downstream (~ 100 Debye.lengths) of the
large satellite did the magnetic field influence the ion-
flow field sufficiently to slightly alter the potential dis-
tribution obtained in the zero-magnetic-field case. The near
wake and most of the midwake as well as the ion current and
drag are not influenced by the field. The far wake region,
however, far downstream of the satellite, is not aécurately
determined by the camputer program because of the memory size
limit. It was for this reason that the investigation of the
expected influence of the field on the ion flow around even

larger satellites was not carried out.
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Influence of strong magnetic field on ion flow. If the

magnetic field is increased to values which do not occur natu-
rally in the ionosphere, the ion-flow field around a satellite
with radius of the order of a Debye length is strongly affected.
Examination of the behavior of the ion-flow field and the as-
sociated ion current and near wake in a strong magnetic field
provides an understanding of the behavior of the ion flow for
very large satellites in an ionospheric magnetic field.

As previously discussed, even when a perpendicular mag-

netic field is strong (as large as B = 500), it has no signi-
ficant interaction with the ion—flowlfield. A strong parallel
magnetic field, however, interacts significantly with the ions,
When the ions are attracted either toward the satellite or into
the wake, they must cross lines of magnetic force which retard
their vertical motion and tend to diminish the effect of the
attractive electric field around the satellite and in the wake.

Influence of stronqg magnetic field on ion current. An

obvious result of the strong parallel magnetic field is the
reduction of the ion current collected by a satellite having
a negative potential. At plasma potential the satellite col-
lects the same current with or without a magnetic field, namely,
the "ram" current. When the potential is made negative, the
ions, "stiffened" by the magnetic field, have straighter tra-
jectories and are not collected so readily as in the case of
no magnetic field.

In Fig., 4.1, the ion current as a function of satellite
potential is shown for two values of parallel magnetic field,

zero and 100. (The plate satellite parameters are EKE = 6,
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.4 : u

FIG. 4.1. ION CURRENT VS. POTENTIAL FOR PLATE
SATELLITE IN MAGNETIC FIELD PARALLEL TO FLOW
DIRECTION (EKE= 6, Foat™ 1).
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and rsat= l.) The decrease from 2.2% to 1.9% in the rate of
growth of the ion current per unit potential is not sufficient
to significantly alter the value of the floating potential
calculated previously for the case of no magnetic field. As
the magnetic field is further increased, however, the value
of ion current approaches that of the "ram" current.

Figure 4.2 shows the ion current to a plate satellite
as a function of the parallel magnetic field. The satellite
potential is fixed at a value of -10. 'Although that portion
of the ion current which is collected by virtue of the nega-
tive potential is severely reduced by the magnetic field, the
satellite continues to attract ions across the lines of magne-
tic force. 1In fact, when the figure is examined for the deve-
lopment of the ion current at the higher values of the magne-
tic field, it is estimated that the magnetic field must be an
order of magnitude larger (i.e., B 2> 1000) if the ion current
is to be reduced to the "ram" current. Hence, an assumption
that the parallel magnetic field constrains the ions to have
straight trajectories is valid only when the ion gyroradius
is much less than the Debye length. Then the magnetic field
is considered "infinite," and a negatively charged body col-
lects only the "ram" current. Since the computer program
assumes that the quantity wgit = (B/B)t is small where t is
the time of particle flight in a cell, the interesting case
of a very large, parallel magnetic field has not been in-
vestigated.

Influence of strong magnetic field on satellite wake.

When the parallel magnetic field is strong, the development

of the wake region is influenced considerably. As in the zero-
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magnetic-field case, the near wake is electron rich. Be-
cause of the magnetic field, however, the electrons in the
wake enter it by moving along lines of magnetic.force with
helical trajectories originating far downstream of the satel-
lite. These trajectories are assumed to be populated by elec-
tron~ion collisions in the far wake region. As a result, the
electron density is proportional to the Boltzmann factor in
the entire wake. The electric field which arises from the
negative charge density attracts ions toward the wake in or-
der to neutralize it, However, the magnetic field retards
the ion motion across the lines of force. The ions instead
of entering and crossing the wake have helical trajectories
which wind about a line of magnetic force. The ions do not
penetrate into the wake further than a distance of one ion
gyroradius. As a result, 1f the satellite radius is larger
than the ion gyroradius, a portion of the wake remains nega-
tively charged for an indefinite distance downstream. Hence,
the entire wake in a strong magnetic field retains the char-
acteristic of a near wake for no magnetic field. 1In actual-
ity, collisions provide the mechanism for neutralizing the
far wake.(G) However, the collision lengths in the iono-
sphere are extremely large compared to the Debye length, and
the disturbed region extends for distances much greater than
those investigated by means of the computer program discussed
here,

Figures 4.3 and 4.4 are the ion trajectory plot and the
contour plot of potential, respectively, for a plate satellite
in a parallel magnetic field (B”-=’200 in dimensionless units).
At this value of field, the gyroradius of the ions deflected
into the wake by the attractive potential of the satellite is
less than the satellite half-width of one Debye length., As a
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result, the ions do not completely fill in the wake, and the
negative potential of the wake extends downstream without
attenuation. The partially neutralized midwake found in the
zero-magnetic-field case does not occur in this case. Further-
more, the ion beams are not created.

It is expected that in the case of very large satellites
(rsat> 100), the magnetic field of the earth, although its
dimensionless value is of the order of unity, has an effect
on the wake behavior similar to that of large fields and mo-
derately sized bodies, The disturbed wake is extended very
far downstream until collisions can provide sufficient ions
which have wake-neutralizing trajectories., It is also pos-
sible that time-dependent phenomena such as Alfvén waves may

occur, but such processes are not investigated in the present

study.
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CHAPTER V: CONCLUSIONS

The numerical results presented in this thesis demonstrate
that the flow-field technique may be used in conjunction with

the "alternating direction implicit" (ADI) method(30)

to

solve the Poisson-Vlasov system of equations and, thereby,

to investigate the interaction of a satellite with the iono-
sphere. Since the flow-field technique permits efficient use
to be made of the ion-trajectory data, the accuracy of the re-
sulting ion density is an order of magnitude greater than that

(21) (for an equal

obtained with the "super-particle” technique
number of ion trajectories). As a result, accurate predictions
of the ion current, satellite drag, floating potential, and
wake behavior have been made over a much wider range of iono-
spheric and satellite conditions than was previously possible.
Furthermore, the flow-field technique has been shown to be ap-
plicable in the presence of a uniform magnetic field.

Plots of the ion current to the satellite as a function
of potential for various satellite rédii, satellite bodies,
and ion kinetic energies have revealed that the ion current in
.all cases has a nearly linear dependence on the potential over
a range of potential as negative as -25 times the electron ther-
mal energy. For plate satellites with a radius greater than
than 25 times the Debye length, the rate of growth of ion
current is less than 0.1% per unit potential. For a smaller
radius, however, the rate of growth may be as much as 7% per
unit of potential (in the case of a sphere of radius one
Debye length). The angular distribution of ion flux to the

surface of a cylinder has the approximate functional dependence
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on angle of a cosine curve incremented by a quantity which
depends on the potential.

The drag on the satellite due to the ions has been shown
to be dependent on the surface interaction as well as the po-
tential. For satellites with radii large compared to the Debye
length, the drag increases with increasingly negative potential
if the ions undergo specular reflection at the surface. For
moderately sized satellites (rsatm 1), that portion of the
drag which is due to the electric interaction may account for
as much as 40% of the total drag.

In the case of satellites with the planar class of body
shape, plots of potential and ion density clearly reveal a
distinction between near wake and midwake. The ion-free near
wake length is proportional to approximately the square root
of the dimensionless satellite radius; as a result, the elec-
tric field extends for many Debye lengths in this region. 1In
the midwake of moderately sized satellites, the formation of
two symmetric ion beams has been obsefved in these numerical
results, Their strength and angle with the flow direction in-
crease with increasingly negative satellite potential. The
formation of the beams is attributed to the wake potential
which is distorted by the sharp ion-density gradient there.

For large satellites (rsat> 10), the ion beams have not been
observed. For satellites of the axially symmetric class, the
wake has a series of ion-free and ion-rich areas which decrease
in strength with increasing distance downstream. The resulting
potential field varies with distance over :a range extending

from -0.4 to 0.4 in units of electron thermal energy.
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It has been demonstrated that a geomagnetic field which
is perpendicular to the flow velocity has negligible direct
influence on the ion motion. A perpendicular magnetic field,
however, which is also perpendicular to the axis of a very
long body will influence the ion motion indirectly by inducing
a linear potential gradient on the body. If the geomagnetic
field is parallel to the flow direction, the midwake of a
large satellite is altered slightly. With a larger parallel
field, the ion-free near wake is extended further downstream.
In fact, for fields where B > 500 (in dimensionless units),
the near wake may extend over distances in which collisional
effects become important. At these large values of field,

the collected ion current approaches the "ram" current.
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APPENDIX A: DERIVATION OF ION DENSITY (FLOW-FIELD METHOD)

If one end of a flux tube is allowed to begin at a
point in the undisturbed plasma where the ion density and the
ion velocity are the known ambient values and the other end
of the tube is extended into the disturbed region, then the
ion density at any point can be calculated from the values of
the ion velocity and tube area at that point. The tube walls
are defined by individual ion trajectories; therefore, the
velocity of the ions at any point can be estimated. However,
in order to determine the area of the tube, the geometry of
the problem must be considered. 1In the planar case, the
"tube" of flux assumes the shape of a strip of flux bounded
by two parallel sheets. In the axially symmetric case, the
"tube" becomes a ring of flux bounded by two cylindrical walls.
The locus of each cylindrical wall is given by an ion trajec-
tory. As two adjacent trajectories are followed, the cross-
sectional area A of the strip or ring varies., From the cur-
rent conservation equation, (2.6), the ion current contained
in the tube at any point is equal in value to the current
at the source of the flux tube upstream in the undisturbed
‘region. Therefore, the ion number density can be calculated
at any point in the disturbed region. It is assumed that the
ion density is approximately constant over the cross-sectional
area of the tube and that the discontinuous change in the den-
sity of a neighboring tube is small compared to the magnitude
of the density.

Figure Al shows an "imaginary" flux tube of infinitesimal
thickness. Surrounding that tube is a flux tube which is

defined by two computed trajectories. The "imaginary" tube
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has been drawn to pass exactly through the (grid) point of
interest P. The change in width of the imaginary tube along
its length is assumed to be proportional to the change in

width of the actual tube, that is,

6L /54 = 4 /2.
-] [

It is computationally convenient to measure the tube width
as a distance ¢' in the y-direction (rather than as a distance ).
The tube width ¢_ in the undisturbed region is already in the
y-direction; therefore, Lm will be used as it is. From the
geometry, and assuming that the width changes slowly, it fol-
lows that
4L = g'cos 8, and ezw/az'= zw/z' .
(A1)
From Egs. (2.6) and (2.7), the number density at the point of

interest P is obtained:

-t L d

v . A v. A

[--] . -] [-- 2. -]
n=nSSUo s, TS .

v. & 5115

Since |v]= v sec ¢ and [A]= A'cos 6, the density ‘is

The area of the "imaginary" tube end is equal to the tube width
§£ multiplied by a unit length L in the "invariant" direction,
i.e.,

A = 81 Lm, and A'= 52'L.

o« o
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If the geometry of the problem is planar, the unit length L
is the same at both ends of the tube, and Lé= L. Thus,
AQ/A'= azm/5z', and from Eq. (Al)

v 1
o ©

. (A2)

If, however, the geometry of the problem is axially symmetric,
then L = 2my_and L = 2ny. Therefore,

A = ézw(2nyw), and A'= 81'(2ny),

where Y, and y are the radial distances from the axis of rota-
tion. Although the distance y is known, the distance y  must
be estimated. It is assumed that the "imaginary" tube is situ-
ated between the walls of the actual tube in the same propor-

tion throughout the length of the tube, From the geometry,

Thus,

el 1 : 2
nen, T (e )]

x (A3)
which is identical to Eq. (A2) except for the factor in
brackets. This factor is the radial compression or expansion
which occurs in the axially symmetric geometry. Note that if
the point of interest is on the axis, then y=0, and the density
is singular at that point. To avoid singularities, the mesh
will be located in such a way that no grid points will lie
on the axis,

It should also be mentioned that in Egs. (A2) and (A3)

the velocity - (the x component of the ion velocity) is
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not known at the point of interest. In fact, since the
velocities of the two trajectories are approximately equal at
the points directly above and below the point of interest,
then either of these velocities is a good approximation for

the velocity at the point of interest.
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APPENDIX B: ACCURACY OF THE NUMERICAL SOLUTION

l. Grid Structure

Introduction. The region of interest which surrounds the

satellite is partitioned into a mesh by means of a set of vexr-
tical and horizontal grid lines. The intersection of these
lines are the grid points (also called mesh points or nodes).
These grid lines and points form the structure upon which all

of the approximations employed in the solution of the equa-
tions of the problem are based., Certain grid points are desig-
nated as the satellite surface, Poisson's equation is approxi-
mated by a set of coupled algebraic equations relating the

value of potential at a given point to the values at neighboring
points. The electric field calculated at each grid point is
assumed constant over a cell, and the ion trajectory is approxi-
mated by parabolic arcs within cells, The ion density is cal-
culated for each grid point by employing a flux-tube approxima-
tion for adjacent trajectories. Thus, each approximated equa-
tion is based on a common grid structure.

Grid-structure requirements. The main requirement for

the grid structure is the accurate approximation of Poisson's
equation both in the region neighboring the satellite and wake
and in the region far away from the satellite. 1In general, the
mesh spacing must not be greater than the Debye length for ac-
curate approximation. In the region near the satellite, the
potential gradients may be large and, as a result, the mesh
size h may of necessity, be much less than a Debye length

(e.g., h = 0.1). In the region far away from the satellite,
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however, the potential gradients are weak and, as a result,
the mesh size may be increased to a value of nearly a Debye
length (e.g., h = 0.75). If the mesh size exceéds a Debye
length in the weak-field region, it is possible that the
iterates obtained by using the ADI method to solve Poisson's
equation (minor iterates) will not converge. Since this
upper limit on mesh size is not required for the convergence
of the iterates of linear finite-difference operators, this
limit may be attributed to that nonlinear portion of the
operator which accounts for the Boltzmann factor.

If both the weak-~field and strong-field areas of the dis-
turbed region are to have a reasonable number of grid points,
a variable mesh size must be employed. In the strong-field
area, the mesh spacing is small; moving toward the weak-field
area, the spacing becomes progressively larger. The variable
spacing is chosen arbitrarily and depends on the parameters
of the problem and the desired accuracy of the results; no
coordinate transformation is used to provide an "automatically"”
varying mesh.

The mesh size must not be made unnecessarily small.
Obviously, the smaller the mesh size, the greater the number
of grid points to cover the same region of interest. Further-
more, the rate of convergence of the minor itnerates decreases
with smaller mesh size, i.e., more iterates are necessary in
order to obtain the same accuracy. Hence, the computation
time needed for a solution increases rapidly. This inverse
dependence of the number of minor iterates on the mesh size
is characteristic of all finite-difference approximations to

partial differential equations (see, for example, Ref. 30).
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Model problem. Figure Bl shows the boundaries of the

mesh structure for a typical plate-satellite problem which
will be used as a model for error analysis, Tﬁe horizontal
mesh size is 0.25 DebYe lengths in the neighborhood of the
satellite, 0.5 in the wake, and 0.75 in the front. The ver-
tical mesh size is 0.2 Debye lengths near the satellite and
increases progressively to values of 0.4 and 0.75 until the
side boundary is reached. Notice that no mesh points lie on
the y = 0 line; therefore, this model grid may be used for
axially symmetric satellite geometries. Furthermore, the
satellite surface is defined to coincide with one of the
vertical grid lines, and the upper edge of that surface ends

on a horizontal grid line.

2, Iterate Convergence and Accuracy

Convergence of minor iterates. For the model and many

other grid structures, it is found empirically that the op-
timum overrelaxation factor w for the minor iterates (see
Chap. II) is approximately 1.55. Apparently, the form of
operator itself has more influence on the relaxation factor
than the exact grid spacing, size of region, or location of
the boundaries. 1In actuality, the overrelaxation value used
is slightly less than the optimum value (¢* = 1.58) determined
for the model case. The reason for this bias is that if o«

is greater than the optimum value, the number of iterates re-
quired for a solution is much greater than if ¢ is less than
the optimum value by a corresponding amount. Therefore, in
order to insure that u will never be greater than the optimum
value for any case, a value smaller than the optimum value of
the model case is used.
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The number of minor iterates necessary for the solution
of Poisson's equation depends upon the degree of accuracy de-
sired for the potential. Generally, there must Be between
10 and 20 minor iterates in order to obtain a potential which
is sufficiently accurate for computation of a new set of tra-
jectories. Since at first the ion charge density record is
not known accurately, it is not important that the potential
be computed to a highly accurate value. When the. accuracy
of the ion density record is improved by recalculation of
the ion trajectories, then the accuracy of the potential also
will improve without an increase in the number of minor iterates,

Spacing between ion trajectories. Once the grid struc-

ture has been chosen, the choice of the spacing between ion
trajectories follows in an obvious manner. Again, variable
spacing is necessary in order to minimize the required computa-
tion time. As a rule, the distance between each trajectory
must be slightly less than the vertical size of the éells
which the trajectory will cross. This choice of spacing in-
sures that variations in the ion charge density will occur
smoothly for every grid point. The only exception to the
spacing rule involves those trajectories which are known

to intercept the satellite. Since the ion charge density
varies slowly in front of the satellite, the spacing between
trajectories may be made as lafge as a few cell widths without
introducing serious error into the ion charge density record .
It is understood that none of these trajectories will enter

the wake where the charge density is likely to vary sharply.

156



Note that the spacing for those trajectories which enter the
wake must be smaller than the wake mesh size even if those
trajectories begin at points where the mesh size is large.

Underrelaxation factor for major iterates. After the re-

cord of the ion charge density has been obtained by use of

the calculated ion trajectories, the potential is recomputed,
and a new record for the ion charge density is obtained. The
iterates which are the result of the alternate calculations
for potential and charge density (called major iterates) con-
verge when an underrelaxation factor for them is introduced,
As in the case of the overrelaxation factor for minor iterates,
the underrelaxation factor for major iterates must be obtained
empirically. The factor for ion density iterates for planar
geometries is approximately 0.75; for axially symmetric geo-
metries where the ion density near the axis may be an order

of magnitude larger than the ambient density, the factor may
vary between 0.5 and 0.6. The factor for the major potential
iterates may be nearer unity since the potential does not have
such large variations as the ion density. Generally, a factor
of 0.75 is sufficiently low to insure convergence. The under-
relaxation factors for both the ion density and potential iter-
ates should be unity for the first iterate since the initial
guess is usually a very poor approximation of the solution.
The remaining iterates may have an underrelaxation factor
which is independent of the iterate number.

Definition of major iterate error. The number of major

iterates controls the accuracy of the solution of the finite-
difference equations which approximate the Poisson-Vlasov

system of equations. In order to measure that accuracy, an
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error norm must be defined. The most frequently used norm--the
root mean square of the values of the diffefence matrix between
one iterate and the next--is not so useful in this problém as
in other finite-difference problems. Since a great many of

the grid points lie in the region where the electric field is
weak, this error norm would fail to reflect any serious errors
in the near wake region where the field is strong. The root
mean square of the relative values of the difference matrix
between iterates is also unsatisfactory since the near zero
values of potential (and, possibly, zero values) in the far
‘field region would inflate and distort the errxor norm. There-
fore, an error norm equal to the maximum absolute value of the
difference matrix between iterates was chosen. Since this
choice of norm reflects the iterate error at only one point--
namely the point with the largest error-~the error appears to
be much larger than is customarily expected in this type of
problem., However, this norm has proved to be much more useful
than the other norms for the error analysis of the finite-
difference techniques employed in the satellite-ionosphere
interaction problem.

The accuracy of the solution to the finite-difference
equation is obtained by calculation of the norm of the dif-
ferences of two consecutive major iterates. As the major
iterates converge to the solution, the norm of the difference
decreases toward a value of zero. The error between any iter-
ate and the true solution, therefore, is approximated by the
norm of the difference between that iterate and the preceding
iterate. Only in the case where the underrelaxation factors
are very small (i.e., less than 0.25) is this estimate for the

iterate error excessively low.
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Major iterate error of model problem. Table III lists

the error associated with the sequence of major iterates ob-
tained in the solution of the problem with typiéal satel-
lite parameters (ﬁKE= 12,'rsat= 1) and the model grid struc-
ture. Since the error decreases with the increase in the
iterate number, the iterates are convergent toward the so-
lution. The error for the potential iterates is, of course,
smaller than for the corresponding ion charge density iterates
since the potential is the result of "double integration" of
the ion charge density. 1In order to compare the iterate er-
ror for a satellite with zero potential and one with a nega-
tive potential, a relative error is defined by division of
the absolute error by the absolute maximum value of the

grid points. (The maximum absolute difference between two
iterates does not occur necessarily at the same grid point as
the maximum absolute value.)

In practice, six to eight major iterates are required
for a satisfactory solution for the model problem. More
iterates may be required for problems with very low ion kine-
tic energy or very negative satellite potential. Since the
.truncation error associated with finite mesh size is about
3% for the model problem (to be proved below), no improvement
in the overall accuracy is gained by calculating a large number
of major iterates.

Intersection of adjacent trajectories. An additional

criterion on the number of major iterates required for solu-
tion of the problem is that large numbers of adjacent ion
trajectories should not cross each other. Any two adjacent

trajectories which intersect fail to satisfy the approximations
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TABLE III

Major iterate error of the potential field of the

model problem as a function of iterate number

(Bgg = 12/ Tgae = 1),
Major Coar = 0 ms;t = -5
iterate Abs. % rel. Abs, % rel.
number error error error error
1 0.577 77. 4.32 97.
2 0.256 33. 0.243 5.6
3 0.0592 7.9 0.127 2.9
4 0.0736 9.8 0.0964 2.2
5 0.0350 4.7 0.0877 2.0
6 0.0114 1.5 0.0480 1.1
7 0.0156 2.1 0.0480 1.1
8 0.0082 1.1 0.0259 0.60
9 0.0274 3.7 0.0102 0.23
10 0.0242 3.2 0.0042 0.097
11 0.0118 1.5 0.0021 0.047
12 0.0044 0.60 0.0008 0.018
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invoked in the flow-field method of calculating the ion
density. Then, at grid points in the vicinity of the
intersection, abnormally high values for the ion density
arise. These high values create a local electric field
which is not self-consistent. In succeeding iterates when
the electric field is obtained more accurately, the number
of trajectory crossings decreases., Therefore, for an ac-
curate solution the number of major iterates should be ex-
tended until no adjacent trajectories intersect. Howeverx,
in certain cases where the remaining one or two crossings
are not near grid points, the results obtained for a small
number of iterates are little different from those obtained
for a larger number of iterates when no adjacent trajectories
cross.

3. Truncation Error

Source of truncation error. The preceding discussion

concerning the error of the major iterates considers only
the error arising during the solution of the set of finite-
difference equations. The discussion now concerns the error
associated with the replacement of the Poisson-Vlasov system
of differential equations by the finite-difference set of
algebraic equations. In other words, even if the number of
major iterates were extended until the difference between
two consecutive iterates became zero, an error originating
from the approximations invoked in the employment of the
finite-difference scheme would remain in the solution. For
example, in Chap. II the differential operator given by

Eq. (2.12) is approximated by the finite-difference operator

of Eq. (2.13). The error of this approximation is proportional
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to the second power of the mesh spacing and is called the
truncation error since the Téylor series expansion of the dif-
ferential operator has been truncated in oxrder Eo obtain a
simple approximation for the operator. Other sources of error
include the approximations invoked by assuming the constancy
of the electric field over a volume cell and the finite spacing
between particle trajectories necessary to obtain the ion-
flow field. Both of these errors are dependent on the mesh
size in such a manner that increasing the mesh size results in
increased error; these errors also may be considered trunca-
tion errors.

The influence of the truncation error on the accuracy
of the solution may be estimated by a comparison of the solutions
for identical problems based on grid structures of different
sizes. Any calculated "solution" has truncation error. If
the identical problem is solved on a grid with smaller mesh
size, the new "solution" contains less truncation error than,
and hence is different from, the first "solution." Each time
the mesh size is reduced, the resulting "solution" contains
less truncation error and approaches the actual solution
more closely. Hence, when two "solutions'" based on grid struc-
tures with different mesh sizes are obtained, it is assumed that
the difference is approximately the truncation error of the
"solution" based on the larger mesh size.

Truncation error of model problem. In order to deter-

mine the truncation error of the solution obtained for the
model problem, two other solutions were obtained based on
coarse and fine grid structures with a mesh spacing twice

as large and half as large, respectively, as that of the model
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problem. While the model problem has 2356 grid points

(76 x 31), the problem with a coarse mesh has 1173 (51 x 23);
the problem with a fine mesh has 9211 (151 x 61). Note that
although the fine structure has four times as many grid points
as has the model problem, the structure with the coarse mesh
has only about 40% fewer grid points than the model problem.
The reason for this lack of balance between the three grid
structures is that the minor iterates do not converge if a
large part of the mesh spacing is near to the Debye length.
Hence, for the coarse structure, all mesh sizes are double
those of the model problem except where the size would exceed
0.75 Debye lengths.

The maximum absolute difference in the potential values
between solutions based on the coarse and fine grid struc-
tures is 0.11; when divided by the maximum absolute potential
value to obtain a relative error, this difference is 15%. On
the other hand, the maximum absolute difference in the poten-
tial values between solutions based on the model and fine
grid structures is 0.024 or 3.3%. This accuracy of the po-
tential values for the model problem is sufficient to insure
the accuracy of the detailed results on current, drag, and
wake behavior presented in the main portion of the text.

Neglect of roundoff error. Roundoff errors which some-

times arise in problems of numerical analysis are due to the
fact that the computer word length is finite and can hold

only numbers with a limited number of significant digits,

Since the roundoff error is proportional to the square root

of the number of grid points times the accuracy of the computer

word, the roundoff error is controlled in this problem by
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employing a computer with words which will hold a sufficiently
large number of digits. 1In the cases where the IBM 7094 com-
puter is used, a word holds eight significant digits; where
the IBM 360 is used, a double-word holds 16 to 18 signifi-
cant digits. Therefore, these considerations show that round-

off error is not a significant source of error in this problem.

4, Influence of the Boundary Location

on the Numerical Accuracy

Front-boundary location. The locations of the boundaries

of the disturbed region have an influence on the accuracy of
the potential and ion-flow fields within the boundaries.
Ideally, the boundaries where the potential is set equal to
zero should be infinitely far from the satellite in order to
duplicate the boundary conditions of the Poisson-Vlasov sys— -
tem of equations; practically, they must be a finite distance
from the satellite. Since the disturbing electric field of
the wake and the satellite is attenuated considerably over
distances of the order of several Debye lengths, the boundaries
can be located in most instances within ten Debye lengths of
the satellite and wake. For example, when the front boundary
is located ten Debye lengths upstream of the satellite, the
values of the ion density of the grid points in the vicinity
of the boundary remain at ambient, Even for satellite poten-
tials as negative as -40, the front boundary must be only
about ten Debye lengths away from the satellite to satisfy

this criterion.
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Side-boundary location. The distance between the side

boundary and the satellite has an important effect on the
behavior of the wake downstream. As the electric field of
the near wake spreads out into the surrounding plasma of the
midwake, the field perturbs the ions located far from the
satellite, and they are attracted toward tﬂe wake. If the
outermost ion trajectory is attracted for a sufficiently long
distance, it moves below the downstream portion of the outer-
most horizontal line of grid points adjacent to the boundary
line. Since no ion trajectory exists above that line of grid
points, the ion density cannot be estimated for the remainder
of the line. Hence, in order to avoid this difficulty during
the investigation of very long wakes, the side boundary must
be located as much as 15 or 20 Debye lengths away from the
satellite.

It should be emphasized that the location of the side
boundary, as in the case of the front boundary, does not af-
fect the potential field in the near wake or in the vicinity
of the satellite. Figure B2 is a semilogarithmic plot of the
potential as a function of the vertical distance for the fixed
position (x = -4) downstream of the satellite. Only the po-
tential within two Debye lengths of the boundary is dependent
upon the location of the boundary. The potential im the re-
mainder of the distance is "locked" onto the solution values,

Downstream-boundary location. The downstream-boundary

location has a similar effect on the potential in its vicinity.
Since the potential there is no longer nearly zero, however,
the change of the potential as a result of the downstream-—

boundary location is significant, Within a few Debye lengths
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of the boundary location, therefore, the values of the
potential and ion-flow fields are not accurate.

The results obtained in that area not in the vicinity
of the downstream boundary are unaffected by location of the
downstream boundary. Since the ions are assumed to have zero
temperature, none travel upstream, and, as.a result, no in-
formation about the downstream conditions can be carried up-
stream by the ions. Only the electric field influences the
ion behavior in the upstream direction, and its effect is
limited to distances of a few Debye lengths. Hence, the re-
sults obtained in the region “shielded” from the downstream
boundary condition are accurate.

A problem with similar conditions to those of the model
problem was run a number of times with the downstream boundary
located further downstream for each run. The potential field
was compared for each run and was found constant from run to
run in that part of the region at least five Debye lengths
from the downstream boundary. It is suggested, therefore,
that the length of the region of investigation is limited
only by the memory size of the computer employed and the cor-
‘'responding time of computation necessary for an accurate solu-

tion.

5. Computation Time of the Model Problem

In order to compare the speed of computation as a func-
tion of the computer model, the model problem was run for
six major iterates on three different machines. On the IBM
7094, the problem runs for 229.8 sec; on the IBM 360/75 it
runs for 87.31 sec; on the IBM 360/95 it runs for 13.56 sec.
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The resulting speeds of computation of the benchmark are

in the ratio of 1:2.6:17 for the three machines.
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APPENDIX C: DESCRIPTION AND LISTING
OF COMPUTER PROGRAM

The computer program, written in FORTRAN, consists of
a short main program and 14 subprograms. The main program
(SETUP) controls the amount of allocated memory space, per-
mitting the program to fit into computers‘of various core
sizes. Furthermore, SETUP calls the subprograms DREAD, which
reads the input data, and DPOCO, which obtains the solution.
The data is grouped into a single format-free packet and is
read under control of the NAMELIST feature of FORTRAN. Since
the NAMELIST feature allows the omission of any of the input
variables, most of the input variables are preset to default
values which may be overridden for the particular problem.

In order to transfer the input values to the remaining sub-
programs, the input variables are located in labelled com-
mon blocks of core storage.

The subprogram DPOCO controls the solution of the major
iterates. This subprogram invokes the "alternating direction
implicit" method and the flow-field method through lower level
~subprograms until a convergent solution is obtained. DPOCO
also directs both the printing of the solution matrices through
DWRITE and the plotting of the important variables through CONTOU.

In order to solve the finite-differenced Poisson equation,
the matrix which operates on the potential values is inverted
by a series of alternate horizontal and vertical sweeps over
the grid points. Subprograms ADIH and ADIV control the hori-
zontal and vertical sweeps, respectively. Both subprograms

use the tridiagonal solver in subprogram TRILIN.
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After the minor iterates have converged satisfactorily,
DPOCO calls upon subroutine RHO which obtains the electric
field, solves for the ion trajectories, and then obtains the
ion-density record. As an ion trajectory passes through each
cell, RHO calls upon ORBIT to calculate the exit parameters,
ORBIT uses the lower-level subprogram TIME to obtain the time
of flight from a point to a line. The two subprograms ROTATE
and ILOC are service routines for ORBIT and RHO, respectively,.

When the ion density has been determined, DPOCO returns
to the matrix inversion routines and recomputes a new set of
potential values. In this manner, DPOCO controls the cycling
of the major iterates until satisfactory convergence is obtained.

Using the two subprograms ERRC and ERROR, a high degree of
error control is maintained throughout the program. At the
point where an error is about to occur, the program notes the
type of error and attempts to take corrective action. In those
few cases where the error is uncorrectable, an appropriate
change in the initial data is generally sufficient to eliminate
it.

Following the listing of the program is the sample data
packet and the printed output for the model problem. The less
frequently varied data are not specified in the packet and, as
a result, their values are given by default options in the sub-
program DREAD, The more frequently varied data are explicitly

stated (overriding the default options) and are defined as follows:
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&INPUT Indicates beginning of data packet.

IMAX Number of grid points in x direction.
ISAT Horizontal grid point at which satellite body is located.
G Matrix of horizontal mesh sizes (from left to right).

XLEFT The leftmost x coordinate.

JMAX Number of grid points in y direction.

JSAT Vertical grid point at which top edge of satellite body
is located.

H Matrix of vertical mesh sizes (from bottom to top and
starting at y coordinate = -H(1l)/2.).

DTR Matrix of trajectory spacing from top to bottom,

TR Matrix of y coordinates at which trajectory spacing

changes value according to DTR (e.g., ATR=.,54 from top
to y=4.81; ATR=.24 from y=4.8l1 to y=2.81l; etc.).

NPMAJ The potential and ion density matrices are printed every
major iterate whose number is a multiple of NPMAJ,.

NWSKIP The potential and ion density matrix elements, when
printed, are printed such that if a row or column is
not a multiple of NWSKIP, that row or column is not
printed.

MPASS Maximum number of major iterates.
OMEGA Overrelaxation factor @ for minor iterates.

ROTINV If "T," geometry is axially symmetric; if "F," geometry
is planar.

ERRADI Matrix of maximum error bounds for each minor iterate,
MITER Maximum number of minor iterates.

'ERMPAR Maximum error of ion density matrix (unless MPASS would
be exceeded in order to obtain this accuracy).

ERMPAU Maximum error of potential matrix (unless MPASS would
be exceeded in order to obtain this accuracy).

RHISTA 1Initial value of ion density for grid points which lie
in triangular region behind satellite (see RHIX).
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MINITE
ALPHAR

ALPHAU

" RHIMAX

UMAX
VXST
POTSAT
RHIX

BETA
XPl

Xp2
XPDEL
YP1l,YP2,

NUG

UG

PLOTU

NRG

RG
PLOTR

Minimum number of minor iterates.

Matrix of the ion-density underrelaxation factors for
each major iterate.

Matrix of the potential underrelaxation factors for
each major iterate.

Matrix of the maximum ion-density value for each major
iterate.

Maximum potential value for all major iterates,
Satellite velocity ug.
Satellite potential msat‘

Value of x coordinate of apex of triangle in which ion-
density values are specified initially by RHISTA.

Ion mass ratio B.

Leftmost x coordinate of potential plot.

Rightmost x coordinate of potential plot.

Spacing of X coordinate per unit of print spacing.

and YPDEL Corresponds to XpPl, XP2, and XPDEL for y
coordinate.

Number of possible potential contour lines whose values
are specified by UG.

Values of the potential contour lines,

If "T," potential is plotted for the respective major
iterate (e.g., PLOTU(6)=T indicates that a contour plot
of potential is produced only on iterate No.6).

Number of possible ion-density contour lines whose values
are specified by RG.

Values of the ion-density contour lines.

Corresponds to PLOTU for ion-density plot.

XTl, XT2, XTDEL Corresponds to XPl, XP2, XPDEL for trajectory plot.

YT1l, ¥YT2, YTDEL Corresponds to YPl, YP2, YPDEL for trajectory plot.

PLOTTR
DYTRPL

Corresponds to PLOTU for trajectory plot.

Value of spacing between plotted trajectories.
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NGTRPL Number of ion-trajectory groups to be plotted (usually
equals one).

&END Indicates end of data packet.
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22

28

2%
31

3C

3z
2C1

3%
37

3¢

44
4¢
48

2C1

LISTING OF SUBRGUTINE ADIH PAGE

SUBROUTINE ADIK({*)
IMPLICIT REAL*8 {A-H,
INTEGER TRAN 1

REAL*8 K

DIMENSION Wll}s Z(1)
EQUIVALENCE (C{1}s W{l)), tK{L1), ZE1)}

CCMMON /CAP/ X(500), Y(2C0), G{(500), H{200),
1 IMAX.JSMAX, IMAX1, JMAX1, ISAT, JSAT,IIN, IOy
LOGICAL®] ROTINV

COMMON /CTRI/ A(S5Q0), B{S00)s C(500), K(500)+ NMIN, NMAX
COMMON /CADI/ C2(500)s €3(200),C4(500}, C5(200), UMIN, UMAX,
1 CMEGA, ERRTRIs+ NMEXP

Go 10 1

ENTRY CADIF(Us RHCI, Cly LX. LY)
DIMENSION U(LXe LY)s RHOIILX, LY)y CLELX,
RETURN

NMIN = 2

NMAX = IMAX1

NEXP= 0
ERRTRI= Q.
Do 32 J =
Do 28 I =
RHOE= Q.
IFLULT,J) oLE. UMAX) GO TO 22

UlIe J)= UMAX

CALL ERRC(NEXP, NMEXP, £22y £2Cls BHADI
IF (ULL, J} +GE«sUMIN) RHOE=DEXP(U(T, J})
K{I) = CS5(JFUCT,J=-1) + C3(JI*U{I,J+1) - RHOE
1
AT}

0~Z3}, INTEGER*4 (I~N)

BETA,
IPU,

POTSAT,
ROTINV

Ly}

JMAX]

2
2y IMAXL

22}

= -c2t1
BL{I) = C1{1,J)
Ciiy = =-C4tl)
IF({JaNEL2} GO TO 31
b0 29 I = 2, IMAX]
K{T) = -C3{2¥*U(I,J-1) +K(I)
B{I) = BLI) -CS(2)
IF{JaGTa JSAT} GG TO 20
A(ISAT) =C.
A(ISAT+1) =
C{ISAT-1) =
C{ISAT) =C.
KUISAT) = BUISAT} *UlISAT, J)
K{ISAT-1) = K{ISAT=~1) + C4lISAT-1)*U(ISAT,J)
KOISAT+1) = K{ISAT+1) + C2UISAT+1) * U(ISAT,J)
CALL TRILIN
00 32 1 = 2, IMAX]
TEM = CMEGA * (Z{I)-U(I,J}}
ERRTRY = CMAXL{ERRTRI+DABS(TE¥}}
UlEsJd) = TEMeLITW I}
RETURN
RETURN 1
END

Ca
Ce
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SLBROUTINE ACIV(®)
IMPLICIT REAL*8 (A~-t,
INTEGER TRAN 1

REAL*B K

DIMENSICN W(l)y Z(1)
ECUIVALENCE (Cl1), w{l)}, {KL1)y Z2(1))

CCMMCN /CAP/ X{59C), Y(2CC), G{500), H{20G),
1 IMaX,JVvaX, IMAXL, JUMAXL, ESAT, JSAT,[IN, IOy
LOGICALY1 RGTIANV

CCGMMON /CTRI/ A(S500), B{50C), C(500}, K(500), NMIN, NMAX
COMMEN /CADI/ C2US0C), C312C0),04(500}), C5(200), UMIN, UMAX,
1 CMEGA. FRRTRIs NMEXP

6L TO 1

ENTRY CADIVIY,
DIMENSICN U{LX, tVY),
RETURN

NMIN = 2

NMAX = JMAX]

ERRTRI= 7.
TRANL = 1
DC 48 1=2.
1F (1 JEQe ISAT)
GO TO (27. 2G),
NMIN = JSAT+]

CC 38 0 = NMIN,
RHCE= Ce
TF{ULT.J) «LE. UMAX) GO TC 36

UtT. Jl= UMAX

CALL EPRCUINEXP,NMEXP, &36+6201, BHACI 3é)
IF (U(Is J) aCEs UMIN} RRCE=DEXP(U(I, J})
KEII=C2L 1) *U{I-1,0)4C40 1)*UL]4]),J)-RHOE
Atd)= -C5(0)
BtJ)= C1IT,
Cldy= -C3{y)
8(2)= PF(2) ~CE(2}

GG TO (43, 42}, TRAN 1
K{JSAT +1)= K(JSAT +1)
CALL TRILIN

D0 44 J= NMIN, JMAX]
TEM= OMEGA *+(Z{J} -utll, J})
ERRTRI= CMAX] (ERRTRI.DABSITEN))
Ut JI¥= TEM +ULlI, J)

GC TO (4B, a&}, TRAN ]

TRAN 1= 1

NMIN= 2

CONTINUE

RETURN

RETURN 1

END

0-Z)s INTEGER74 (I-N}

BETA,
1PU,

PITSAT,
ROTINV

RHCI, Cls LX, LY)
RHOI{LX, LY)s CLILX, LY)

IMax]
TRANL = 2
TRANL

JMAXL

4RHOTLT,d)
J)
JSAT)

+C5(JSAT +1}) *ULISAT,

1

+RHOTL I, 0

2

174

1C

14

12

2¢

22

17
1

2C

24

32

2cl
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SUBROUTINE CONTGU (Ay UG, NUG, ¥y, WCRDS, *)
IMPLICIT REAL*8 (A-Hs 0~Z), INTEGER¥4 (I-N)
DIMENSICN XPM{40)e WORDS(1)s IKEY{1l), CHARACIS), UGI(L}
EQUIVALENCE (IKEY(1l}, XPM(1} )
LCGICAL¥]1 CHARAC /1Hls 1H3, 1HS5, 1HT7, 1HS/.

1 BLANK /1H /,ASTER /1lH%/, XES /1HX/, AMINUS /1H-=/,

2 AIES /1HI/+ CHAR, WORDS
DIMENSICN AL, LY}

COMMDN /CCONT/ XFl, XP2y XPCEL, YPl, YP2, YPDEL

COMMON /CPLTRA/ XT1ls XT2, XTDEL, YT1, YT2s YTDELs YMALISOD),
COMMON /CAP/ X{500), Y(2C0), G{500}, H(200), BETA. PNTSAT,

1 IMAX,JMAX, IMAXl, JMAX1, ISAT, JSAT,IIN, IO, IPU, ROTINV
LOGICAL*1 RATINV
POL{Xy XOs Xls YO,
Go 10 1
ENTRY CCONT
LOGICAL*1 BL{LBX,
RETURN
IF (NUG +EQes C) CALL ERRCR{E&2C1, 8HCONTOU 6}
00 6 I1= 1,120
00 6 J1= 1. 57
BL{I1ls J1)= BLANK
NUMLX=TIDINT{{ XP2-XP1} /XPDEL+1.00001)}

IF (NUMLX «GTs 12C} NUMLX= 12C
NUMLY=IDINT{{YP2 ~YPl) /YPDEL +1.00001}

IF (NUMLY ,GT. 57) NUMLY= 57

NUMLX1= NUMLX -1
NUMLY1= NUMLY -1

XP2= XPl+DFLOAT(NUMLXL}
YP2= YPL+DFLOAT(NUMLYL)
YP= YPY

Do 30 Jl= 2,
XP= xP1

yP= YP +YPDEL
IF {YP oLY. ¥Y{1l) +ORs YP

J= JLCC(YP)
DO 30 Il= 24
XP= XP +XPDEL
IF {XP oLTe X{1) .OR.
I= ILOC(XP)
IF {XP oLT,
UPl= POL{XP,
UP2= POL(XPy X(I}4,
upP= PCL{YP, Y(J),
CC 10 K= 24 NUG
IF UP JLEs UGIK-1) .ANDs UP ,GTe UGIK}) GG TO 14
1F (UP ,GEs UG{K~1) 4AND. UP .tTa UGIK)} GO TO 14
CONT INUF
CHAR= XES
GC TO 12

= MOD(K-2,
IF {MCD(K, 2)

K= K/2 +1
CHAR= CHARAC(K}
Ge 1O 12
8LIIls J1}=

PLUS /1H+/,

111

Y1) = (YO *(X1 ~X} =YI *(X0-X)}/{X1 -XC}

Ay LXy
L8Y)

ty, BL, LBX, LBY)

*XPDEL
*YPDEL

NUMLYL

+GTe Y{JMAX)) GO TO 30
AUNLXT
XP +GTa X{IMAX}) 6O TN 30

X{21)
X(E),

1= 1
XCI+1) o A(T,J), A(T#1,
XUI+1)s AlIy J¥1)y ALT+1,
Y{J+1) , UP1, UP2}

41
Je1)}

10)
+EQ, €} GO TO 30

CHAR
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CCNTINUE

IF (XUISAT) LTa
1 GO 10 22
I1=I0INTUL{X{ISAT)~XP1])
Jo= 1
IF(-Y(JSAT}
J1= NUNLY
IF (YUJSAT) oLTe YP2) Jl= ICINT(( Y{JSAT)
DD 16 J2=J0, J1

BLITly J2)= AIES

00 18 1= 1, MNUNMLX

CEAR= AMINUS
IF (MCO(IL -1,
CHAR= PLUS
Kl=(11-1) /1C +1

XPM(KLl= XPL40OFLOATIII~1} #XPLEL
BLOTLl., NUMLYI= CHAR
BLUILl, 1)= CHAR

DO 20 J1l= 2. NUNLY]

ALl J1)= AMINUS
BLINUMLX, J1)= AMINUS
WRITE (I0s1CC) (WCRCS(1),
WRITE {ID. 1C¢€)

£0 24 J1= 1, AUNLY

J2= NUMLY -J1 +1

IF (MQC{J2-1+ IC} WE€Q.
WRITE (I0.1CL1) (BL(T, J2}%,
GO TO 24

YP= YPL+DFLOAT{J2-1) #*YPCEL
WRITE (10,1C2) YP, (BLIT, J2}),
CONTINUE

WRITE (10.,103)
DO 32 I= 1., NUG
IKEY(T)= I-1
WRITE (10.1C4)
RETURN

RETURN 1

ENTRY PLTRAL

Do 50 Il= 1,120
BC SC J41= 1, 57
BLII1, J1)= BLANK

NUMLX=IDINT((XT2 ~XT1) /XTDEL +1.00001)
IF (NUMLX oGTa 12CG)} NUMLX= 120
NUMLY=TDINT(L{ ¥T2 -YT1) /YTDEL +1.00001)
IF(NUMLY +GTs E7)} NUMLY= 57

NUMLX1= NUMLX -1

AUMLY 1= NUMLY -1

XT2= XT1+DFLCAT{NUMLX1} *XTDEL

YT2= YT1+DFLOATINUNLYL} *YTDEL

RETURN

ENTRY PLTRA2
DO 52 I= 111,
IF {X(I} oL T,
1 YMAL(I) «GT,. YT2) GO TO 52
I1=IDIKT{{X(I) -XT1) /XTCEL +1,5)
JI=ICINTOCYMALCIY =YT1) /YTOEL +1.5%
BL{Il, J1}=ASTER

XP1 «0Re X(ISAT) oGTe ¥P2 (ORs Y{JSAT} 4LT.

/XPDEL +1.5)

«GTe YPL} J40= IDINT(I-YI{JSAT) ~¥YPLl) /YPDEL +1,5)

~YP1) /YPDEL +1.5)

1C) «NEa C) GO TN 17

I= 1.M}

Q) 6C 1C 23
1= 1,120)

1= 1,120)

{XPM{K)y K= 1, K1)

CIKEYLI), UG(T)e I= 1, NUGH

1Max

XT1l «ORs X{I) oCT. XT2 oORe YMAL(I)} 4LTe YT1 LOR,

yP1l)

4



52

4é

42

37
38

40

44

100
101
1c2
103
1C4
105
106

2¢

28

ac

5¢

55

58
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CONTINUE

RETURN

ENTRY PLTRA3

IF {XCISAT) «lLTe XT1 oDRe X{ISAT) 4GTe XT2 o0Re Y(JSAT) oLTe YT1}
1 GO TO 42

T1=IDINTU{X(ISAT}=XTL} /XTDEL +1.5)

Jo= 1

IF(=Y(JSAT) +GTe YT1) JO= IDINTC({-Y{JSAT) ~¥YT1) /YTDEL +1.5)

J1= NUMLY

IF (Y(JSAT) oLTe ¥YT2) Jl= IDINTE{ Y(JSAT) -YT1) /YTDEL +1.5)

00 36 J42=40, J1

BL{Ile J2)= AIES
DO 38 I1= 1, NUMLX
CHAR= AMINUS
IF (MOB(I1 -1,
CHAR= PLUS
K1l={11~-1) /10 +1

XPM(K1)= XT1+4DFLOAT(I1-1) *XTDEL
BL{I1ls NUMLY)= CHAR

BL{I1, 11= CHAR

DO 40 Ji= 2, NUMLY]

BL{l, J1)= AMINUS

BLINUMLX, Jl)= AMINUS

WRITE (10.105)

DO 44 Jl= 1., KUMLY

10} .NE. €} GO TO 37

J2= NUMLY =Jl1 ¢1
IF (MOB{J42-1, 1C) «EQ. O) GO TO 43
WRITE (10,101} (BLI{I, J2)sy I= 1,120}

GO TO 44
YP= YT14DFLOAT(J2-1) *YTOEL

WRITE (10,102} YP, (BL{I. J2), I= 1,120}
CCNTINUE

WRITE (I0,103) (XPM{K)}, K= 1, K1}

RETURN

FORMAT (1H1 49X 16HCONTQUR PLCT CF 48A1 7/}
FORMAT (7X120A1)

FORMAT (1X FS5.1s 1X12CA1)

FORMAT (120 4X FSel, 1X))

FORMAT (1HC 48X 11HKEY TC PLOT / 10{1lX l4, 1H= Fé.2))
FORMAT {1H1 4SX 15HTRAJECTCRY PLOT

FORMAT (1KC /)

END
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SUBROUTINE CPCCO (u,
IMPLICIT REAL*E (A-b,
DIMEASICN U(LX, LY},
LOGICAL*1 WRMAY

CCMMON /CPOCD/ ERRADT(20), RHINAX(2C) ALPHAULZO0),

RHCIe TE, Cly LXy LY)
0=-Z)e INTEGER*4 (I-N)
RHOT{LXy LY)e TE(LX, LY},

CLE{LX, LY}

ALPHAR(2D1},

1 FACITE, ERMPAR, ERMPAU, UG(4C), RG(&D), RTG(40),

2 NUGy NRGs NRTG, MPASS,MITER, MINITE, NPITER,

2 MNPMAJ, WRITEF(2C)}y PUNCH(2C), TRACC{2C), PLOTU(2D), PLCTR(2D},
3 PLCTTR(2C1, TESACI. WRCHDE. PLCTRT(20}

LCGICAL=~1 wRITEF, PUNCH, TRACC., PLCTY, PLCTR, PLDTTR, TESACI,
1 WRCHDE., PLCTRT

CCMMON /CAP/ X{50C), Y(202), G{500), H{200), RETA, POTSAT,

1 IMAX,JMAX, IMAXl. JMAXL, [SAT, JSATSIIN, IQ, IPU, RITINV
LOGICAL*1 ROTINV

CCHMEN /CREG/ CTR(10}, TRI10}, VXITEM{20), CURRy UNCURR, W(y
1 VINM, CYTRPLs DRAG(2)}y UNDRAG{2),
2 NCRCSS,y NTRAJ, NPTRAJy NTSKIP, NGRP,

2 NGTRPL, WRFLCW, ACCTRA, TRPLCT

LOGICAL®)] WRFLCwe ACCTRA, TRPLCT

COMMCN /CACT/ C20506G), C20200),C4(500), C5(200), UMIN, UMAX,
1 CMEGA. ERRTRI, NMEXP

COMMON /CWRI/ NPASS, MWSKIP, TTIME

RETURN

ENTRY PGLO

OC 8C NPASS= 1, MPASS
ERMTRI= ERRATI(NPASS)
WRFLOW= WRITEF(APASS)
ACCTRA= TRACC(NPASS)
TRPLCT= PLCTTRINPASS)
WRMAJ= ,FALSF.
IF{MCO{NPASS-1, NPMAY)
00 26 I= 2, [MAx]

oC 26 J= 2, JMaxl
CliT, J¥= 2. /H{JY 7 H{J -1}
ASSIGN 28 TC LRET

OC 55 ITFR= 1, MITER

GC TO LRET, (29, 3C)

CALL ARTH{EL)

ASSIGN 3C TC LRET

GO TC 30

CALL ACIV(EL)

ASSIGN 28 TC LRFT

Ga TO S¢C

IF (FRRTR] LEs EPMTRI LAND. ITER .GTe MINITE) GO TC 58

IF { MCD{ITER -1+ NPITER} aN[, NPITER -~1) GO 70 55

WRITE {(IC,1C3) ERRTPI, ERNTRI, OMEGA, ITER

CALL WRITEM (U.35, SHPCTENTIAL MATRIX PARTIALLY CCMPUTED )

+ECs NFMAJ-1} WRMAJ= . TRUE.

42, /G(I) /G(I -1}

CONTINLE

IF (ERRTRI ,GT, FACITE *ERMTRI) CALL ERROR{El, BHPCCO 55)
WRITE (ICs 114}

ERRPAU=~ D,

0N 60 I= 2, IMAX}

N 60 J= 2, JMAX]1

TEM= ALPRAL{NPASS) =(UlI, J) -TEtL, J}}
ERRPAU= DMAX] {ERRPAU,DARS(TEN))

Utle J)= TEM +TELI, N}

175

60

61

64

53

62

65

617
&€
8C

1ce

101

1¢7

1i0
113
114
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TE(Is J)= RHOIC(I, J)

WRITE (IC,100) ERRTRI, ERNTRI, OMEGA, ITER
WRITE (10,107} ERRPAU, ERMPAU, ALPHAUINPASS)
DO 61 I= 2, IMAXL

UlT, 1}= UL, 2)

IF € PLOTUINPASS)) CALL COANTOU (U, GHPOTENTIAL, £64)
IF( «NOT. WRMAJ) GC TQ 63

CALL WRITEM (U,16¢ 16HPOTENTIAL MATRIX )

IF(TESACI) GO 7O 1

IF («NOTs WRCHLCE «AND.
DO 53 I= 2, IMAX1

DO S3 J= 2, JMaXl
RHOI(1e J)= RHOI{I, J)-DEXPLU(I, J))

IF (WRCHDE)} CALL WRITEM (RHOI, 21,21HCHARGE DENSITY MATRIX )

UGy NUG, 9,

«NCT, FLGTRT(NPASS}) GO TO 62

IF {PLCTRT{(NPASS})} CALL CCATCU (RHCI,» RTG, NRTG, 14,

1 14HCHARGE DENSITY, €62}

IF {ERRPAU oL T. ERMPAU) GO TO 1

CALL RHC (&1}

ERRPAR= 0,

DO 65 I= 2, IMaAX]1

DO 65 J= 2, JMAX]

TEM= ALPHAR(NPASS) *({DMINI{RHIMAX{NPASS), RHOI{E, J}} ~TE(Iy J))
ERRPAR= DMAX1 {ERRPAR,DAEBS(TEM))

RHOI{Is J)= TEM +TE(I., J)

TELI, J) = Ull, J)

IF (PUNCH{NPASS)) WRITECIPU,110) IMAX, JMAX, I[SAT, JSAT, MXYMAT,

1 X(1}s BETA, VXST, ROTINV, (G{I),» I= 1, IMAX), (H{J}, J= 1,JM8X),
2 (tUlTs J)y I= 1y IMAXY, J= 1, J¥AX}, ((PHOI(I, J)¢ [I= 1, iMAXI,
2 J= 1. JMAX)

WRITE(IC+101 JUNCURRINTRAJ, NCRCSS, VINM, CURR, ERRPAR,

1 ALPHARINPASS}. ERMPAR, DRAG, UNDRAG(1}

IF ( PLOTR{NPASS)) CALL CCATOU (RHCI, RGy NRGy 11, 11HION DENSITY,
1 g6

IFU .NOTe WRMAJ) GC TC 66

CALL WRITEM {RHOI,18, 18HICN CENSITY MATRIX)

IF (ERRPAR oL T. ERMPAR) GC TO 1
CONTINUE

WRITE (10,113} MPASS

RETURN

FORMAT (// Sx LCHPDE ERRCR= IPElle4s 5X LBHMAXIMUM PDE ERROR=

1 EBaly 5X 25HPDE RELAXATION PARAMETER= (QPF6,3, 5X 2IHNUMPER OF IT
2ERATICNS= 13}
FORMAT(/SXBHCURRENT= F 945, ©SX 14,

13H TRAJECTCPIES 8X I4,

1 10H CROSSINGS10X 1SHMAXIMUM 2~VELOCITY= 1PFlle4/ 5%
2 14HNCRF. CURRENT= CPF9.5, 5X 10MKHC-ERROR= 1PE1l.4,
3 5X 1CHRHO-ALPHA= OPF5,2,  6X I8HVAXIMUM RHO-ERROR= 1PER,1/
4 5X 14HNORM, DRAG(R}= OPF9.5,  5X 14HNORM., DRAG(Al= DPFG.S5,
5 3X 5HDRAG= 1PELl.4)

FORMAT ( 5X BHU-ERROR= 1PE1ls4y 7X 16HMAXTMUM
1U-ERROR= EB.1s 7X BRU-ALPHA= CPF5,2)

FORMAT ( SI3, 1P3Ells4, L2 / (CP1CFB.4)

FORMAT ( 7/ 1X 13,26k MAJOR [TERATES COMPLETEQ. // |

FORMAT (// 1HO 4X 3LHMINCR ITERATION LIMIT EXCEEDEDs  //})

END .
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SUBRCUTINE CREAD (U, RHCIs TE, Cly LX, LY)

IMPLICIT REAL¥E (A-k, O-Z1y INTEGER*4 (I~N)

DIMEASICN UCLXe LY) s RHCT(LX, LYJ, TE(LX, LY}, CL{LX, LY}

LOGICAL¥1 CARCS, ZERD, PRCOE

CIMENSICN VGROUP(2C), LDATE(2)

EQUIVALENCE (X(1)e XLEFT)

COMMON /CAP/ X(500), Y(2C0)s G(500), H(20C), BETA, POTSAT,

1 IMAX,JMAX, IMAXL, JMAXL, ISAT, JSAT,LIN, 10, IPU, ROTINV

LCGICAL*) ROTINV
CCMMON /CPCCC/ ERRACI(20), RHIMAX(2C),ALPHAU(20),
1 FACITE. ERMPAR, ERMPAU, UG(4C), RG(&O), RTG(40},
2 NUGe, NRG, NRTGy MPASS,MITERs MINITE, NPITER,
2 NPMAJ, WRITEF(2C), PUNCH(2C}, TRACC(2CI},

ALPHAR(20),

PLOTU(2D0)y PLCTR{20},

3 PLCTTR(20), TFSACI, WRCHDE., PLOTRT(20)

LCGICAL*Y WRITEF, PUNCH, TRACC, PLOTU, PLOTR,y PLOTTR, TESABI,
1 WRCHDE. PLOTRY

CCMMCN /CILCC/ XVMAT, YVMAT, IMAT{5C0), JMAT{S00)

COMMON /CRHO/ DTR{10), TR(10), VXITEM(20), CURR, UNCURR, WC,
1 VZNM, DYTRPL, CRAG(2), UNDRAG(2},
2 NCROSSs NTRAJ, NPYRAJ, NTSKIP, NGRP,
2 NGTRPL, WRFLEW, ACCTRA, TRPLCT

LOGICAL*1 WRFLCWs ACCTRA, TRPLCT

COMMON /CADI/ C21500), €3(2001,C4(500)s C5(200}s UMIN, UMAX,
1 CMEGA, ERRTRIs» NVEXP

COMMON /CWRI/ NPASS, NWSKIP, ITIME

CCMMON /CCONT/ XPl, XP2, XPDELy YPl, YP2, YPDEL

COMMCN /CPLTRA/ XT1l, XT2. XTDEL, YTl, YT2, YTDEL, YMAL{500), I1l1
NAMEL IST /INPLT/ G+ H, TNMAX, JMAX, ISAT, JSAT, TESADI, MXYMAY,

1 ALPHAUJRCTINV, ERRADI, NWSKIF, RHINAX, NMEXP, RETA, POTSAT, VXST,
2 RHISTA, MPASS, TRACC, DTR, TR, ZERC, MITER, NPITER, NTSKIP,
3 UMIN., CMEGA, ERMPAU, WRCHDEs XLEFT, WRITEF, ALPHAR, RHIX,
& ERMPAR, PUNCH, CARDS, NPMAJ, NPTRAJ, TRATIO» NGRP, VGROUP,

5UG, NUGs XPl, XP2, XPDEL, YPl, YP2, YPDEL, PLOTU, PLOTR, BFIELD,
6 PLOTTR, NGTRPL, DYTRPL, XT1l, XT2, XTDEL, YTl, YT2, YTDEL, UMaX,
T MINITE, FACITE, PRCOE, RGs NRG, RTG, NRTG, PLOTRT

NAMEL IST/QUTPLUT/ CARDSy ZERC, TESADI, RCTINV, WRCHDE,
1 MITER, NPITER, MINITF, FACITE, OMEGA., MPASS,
2 ERMPAR, ERMPAU, NMEXP, UMIN, UMAX, NWSKIP, NTSKIP,
3 BFIELDs WC, RHIX, RHISTA. NPMAJ, NPTRAJ, TRATIC, NGRP, MXYMAT
NAMEL IST /OUTPLBG/ NUG, XPl, XF2, XPDELs YPl, YP2, YPDEL. NRG,NRTG
NAMELIST /OLTPTR/ NGTRPLs DYTRPL, XTl, XT2, XTDEL, YT1l, YT2, YTDEL
RETURN

ENTRY REAC

REAL*4 ITIME

CALL CLCCK (2}

ITIME= C.

TIN= &

10=¢

1PU= 7

MXYMAT=2GG

NPASS= C

TESACI= .FALSE.

ZERD= +TRUE,.

NTSKIP= 1

NWSKIP= 1

REISTA= 0,



ic

12z

17

1F

1¢é

13

21
22
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NMEXP= 10

TRATIO= 1.

NGRP= 1

NGTRPL= O

VXS§T= ,036323

BETA= 429376,

BFIELD= Q.

NPTRAJ= 1

POTSAT= Q.

MPASS= 1

NUG= ¢

NRG= Q

NRTG=0Q

00 3 I= 14 20
VGROUP(IN= Q.
ALPHAU(I)= 1,
ALPHAR(I}= 1,
RHIMAX{I)= 24
ERRADI(I}= L0001
PUNCH{1}= oFALSE.
PLOTU(I)= JFALSE.
PLOTR(II= oFALSE.
PLOTRTUI «FALSE,.
TRACC(I)= «FALSE.
PLOTTR(I)= JFALSE.
WRITEF(I)= JFALSE,
WRCHOE= o+ FALSE.

CARDS= oFALSE.

PRCOE= «#FALSE.

NPMAY= 1

MITER= 75

NPITER=75

MINITE= 10

FACITE= 10.

UMIN= -10.

UMAX= 3,
READ{ TIN+ INPUT, ERR= 1,
IF {IMAX 4LEe O «ORe JMAX.LEs 0) GO TO 202
IF {CARDS) REAC(IIN, 110, ERR= 1, END= 202)
1 IMAX, JMAX,
1 XLEFT., BETA, VXST, RCTIAV, (G(I)s k= 1, IMAX},
2 (LulI, 33, I= 1, IMAX), J= 1, JMAX), ((RHOI(I, J),
3 J= 1, JMAX)

IF {IMAXeCTe LX aGRs
IMAX1= JMAX -1

JMAX1= JMAX -1

Y{l)= -tl(1)/2,

DO &4 1= 2+ IMAX

X{I}= X{] -1) +GLI-1)
DO 6 J= 2. JMAX

Y= Y(J -1} +H{J-1)
DO 8 I= 2, IMAX1
C2l11= 2o /GUI =1) 74GLT =1) +G(I))
Ca{I)= 2e /G{1) Z3G(I -1) +G{I}}
TEM= Qs

DO 10 J= 2, JNAX1

IF (ROTINV}) TEM= 1. 7Y(J)

LISTING OF SURROUTINE CREAC

END= 202)

ISAT, JSAT,

I= 1,

JMAX oGTe LY) CALL ERROR{Els BHREAD 4)

DAGE

C3(Jd= (2. /H{J) 4TEM) J{H(J) + H{J =1})

C50d)= (24 /F(J-1I=TEMI/{H{I) + H{J -1})

00 1¢ I= 2, IMAX1

CliTe Jd= 2. /HLJ) / RLS =1) +2, /G(I) /GIY =1}
XVMAT=DFLCAT{MXYMAT) /(X({IMAX) =X{1)})
YVMAT=CFLCATIMXYMAT) /Y (JMAX)
IMAT(MXYMAT +1)= JMAX

JMATINMXYNMAT +1)= JMAX

1= 1

Ji= 1

D0 12 I= 1, MXYMAT

IF (X{I1 +1} «LELDFLOATUI} /XVMAT +%(1})
IMATC(I)= 11
IF {Y{(J]1 +1}
JMATED)= U1
VXI= OSCRT( CABS(TRATIO /BETA}}
DC 13 K= 1, NGRP

VXITEM({K)= vXI AVGRCUP{K) +VXST
WC= BFIELD /RETA

ENERGY= BETA* VXST *VXST /2,

IF (CARCS) €0 TC 2¢C

IF {4NGT. ZERC) GC TO 2C

OC 14 I= 1, IMAX

DO 14 J= 1, JMAX

Utl, J)= C.

RHOI(Iy J)= 1.

Jl= JSAT -1

IRHSTA= TLCC{RKIX}

DO 17 J= 24 1

DO 17 I= 2, ISAT

REOI(T, J)= RHISTA

DO 18 I= IRHSTA, ISAY

JRH= JLCCUIX(]I) =RHIX) ¥Y{JSAT)
D0 18 J= 2, JRKH

RECI{T. J}= Ca

DC 1€ J= 1, JSAT

ULISAT, J¥= PCTSAT

00 19 I= 2, IMAX]

DD 19 J= 2, JMAX]

TE{I, J)= U{I,s J}

CALL CATE (LCATE(1)}

WRITE (10, 1C8) LECATE,
1 {1+ WRITEF{I)y FRRADI{I)s ALPHAUI{L},
1 RHIMAX(I), PUNCH{I}. PLCTU(I}, PLOTR(I},
2 TI= 1+ MPASS)

WRITE (10,112) IMAX, JMAX, ISAT, JSAT, X{l), XUIMAX), Y(JIMAX),
L XUISAT}sY{JSAT), v¥ST, BETA, ENERGY, PDTSAT

WRITE (I0,1C2) (I, X(D)y I= 1, IMAX)

WRITE (10,1027 (Js YUd)s J= 1, JMAX)

oo 21 J= 1, 1Q

CTR{JI= DTR{J} #,99511477
IF (TRUJY L1LEe 04} GO 7O 22
CCNTINLE

WRITE (10,109) (1, CTR(I)s
WREITE (IC.1L11l} (K, VGROUP(K},
WRITE {(IG.CLTPUT)
IF (NUG «NE» 0 #0ORe

Il= 11 +1

«LEJDFLGAT{I) /YVMAT) Jl= J1 +)

/ (XCISAT) =-RHIX) -.001)

ALPHAPII
1

)y
PLOTTR(T}, TRACCI(I),

TR(I)y 1= 1y J )
VXITEM{K)s K= 14 NGRP)
NRG

+«NEs C «CRa

MXYMAT ,
(HEJ)y J= 1,JMAX),
TMAX ]y

9

11

NRTG oNEs 0) WRITE (10,0UTPLO)

11

202
102
1¢3
1C4
105
106
1c8

109
110
111

112

10

1c0
161

176
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'IF (NGTRPL oNEe 0} WRITE (10,CUTPTR}
IF (.NCTe PRCOE} GO TO 11
Jz MXYMAT +]

WRITEC(IO+104) (1, IMATUIY, JMAT(I}, I= 1, J}
WRITE (10,105) (X{I)y C2{1)y C4(L),y I= 2, IMAX1}
WRITE (104106} (Y(J)y C3(I)s CH(L), J= 2, JMAX])

CALL WRITEM (Cle20y 20HDIAGONAL COEFFICIENT )
RETURN
CALL EXIT
FORMAT (77
FORMAT (//
FORMAT (// 50X

8HX MATRIX / 13( 1X I3, F6el))

BHY MATRIX /7 12( 1X 13, Fba21)

22HTABLE LOCK-UP MATRICES / 13( 13, 213,
FORMAT (/7 50X 23HHORIZONTAL CCEFFICIENTS / S5( OPF6.l,
FORMAT (// 50X 21HVERTICAL COEFFICIENTS / S5(O0PF6.2,
FORMAT (1H1 49X 7HPOCC 11 S0X 244 ///

1 TX 4HPASS 6X SHWRITE 6X 3HADI 9X 2HU~ TX &4HRH(O- SX
2 THMAXIMUM 5X SHPUNCH 4X 6HPLCT U 3X S8HPLOT RHO 5X 4HPLQOT 6X

3 8S8HIMPROVED / 6X 6HAUMBER S5X 4HFLOW 6X SHERROR 6X

50X
50X
1H/)}

11

1P2E1Ca2))
1IP2E1D.2 1)

4SFALPHA 5X SHALPHA 17X 3HRHQ 7x 6HCPTION 3X AHCPTION 4X 6HOPTIGN 2X

5 12HTRAJECTORIES 3Xx

6 6HORBITS 7/15%X 154 5% L5,
7 5X 1PEBs142X LS. 3{5X LS}y 7X LS))
FORMAT (// SCX 18HTRAJECTCRY SPACING /
FORMAT { 513, 1P3Elle4, L2 / {(QP1OF8.4))
FCRMAT (/7 50X 19HION VELOCITY GRCUPS // 38X 6HNUMBER 4X

1 16HTHERMAL VELCCITY 4X 14HTOTAL VELOCITY / (40X 12, 8X F10.5,
2 9% F10.6))

FCRMAT (// 35X SHIMAX= 14, 3X 5HJMAX= 13, 3X SHISAT= 14, 3X

1 5HJSAT= 137/ 1X 24HHORIZONTAL COCRDINATES { FSels lHsy F5.1y

2 1K) IX 2BHVERTICAL COORDINATES ( 0.0, FSely 1H) TX

3 28WSATELLITE ERGE COORDINATES ( FS,1, 1H, FSa1, 1lH) /

4 1X 19HSATELLITE VELOCITY= FB8,5, 16X 1S5HICN MASS RATIO= F7.0,

5X 1PEBels 5X CPFS.2,

8(13, Fb6a3, FTa3}1}

5% F542y

5 19X 1SHION KINETIC ENERGY= F7,3/1X Z20HSATELLITE POTENTTAL= F6,1)

END
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SUBROLTINE CWRITE (Ay LX, LY}

IMPLICIT REAL*® (A-F, 0-2), INTEGER#4 {I-N}
CIMENSICN ACLX, LY)

RETURN

ENTRY WRITEM (A, NWRD, M)

LOGICAL*T M(1)

CCMMON /CWRI/ NPASS, NWSKIP, ITIMF

COMMON /CAP/ X{50C)» Y(2CO)s G(50D), H(20C), BETA, POTSAY,
1 IMAX.JMAX, IMAX1, JMAX1, ISAT, JSAT,IIN, 10, IPU, ROTINV
LCGICAL*1 ROTINV

REAL*4 ITINE,JTIME

CALL CLCCK {1+ JTIME)

TIME= JTIME ~ITIME

ITIME= JTINE

WRITE (10,100} NPASS, TIME, (M{I)y I= 1, NWRD)

B0 10 J= 2, JMAX1, NWSKIP

WRITE (T0,1C1) Y(J)s (X(I)sA{Tod)sI= 2, IMAX1, NWSKIP}

RETURN
FORMAT {13HOPASS NUMBFR= 12, B8X F7.2, 8H SECCNDS 12X 6CA1}

ZRSMAT (710X 2hY¥= OPF€.2 / T{ OPF6el, 1PE12.,4})

12



LISTING OF SUBROUTINE ERRC

SUBROUTINE ERRC (N, NMAX. *, #*, ALOC)

IMPLICIT REAL*E (A~-K, 0-2Z}y INTEGER*4 (I-N)

COMMON /CAP/ X{500), Y{200), €{500), H{200}, BETA, POTSAT,
1 IMAX,SMAX, IMAX1, JMAXLl, ISAT, JSAT,1IN, IO, IPU, ROTINV
LGGICAL*1 ROTINV

LOGICAL*1 ALCC(E)

PAGE 13

N= N+l
IF (N «LTe. NMAX) RETURN 1
WRITE (I0+ 101) ALOC
RETURN 2
101 FORMAT {32HOMAXIMUM ERROR COUNT EXCEEDED AT 1X8Al, 31H. ALTERNATE
1 LOGIC ROUTE TAKEN. //1
END
LISTING OF SUBPRCUTINE ERRCR 14
SUBRCLUTINE ERRCR (%, ALCCH
IMPLICIT REAL*8 {A-F, 0-1), INTEGER*4 (I-N}
COMMON /CAP/ X{50C), Y{2C0), €{500), H{200), BETA, POTSAT,
1 IMAx,JMAX, IMAX1l, JMAX1, ISAT, JSAT,IIN, IO« IPU, ROTINV
LCORICAL#*] RCTINY
LCGICAL*) AtLOC(8)
WRITE (10, 1CC) ALCC
RETURN 1
100 FORMAT (18HCPOSSIBLE ERRCR AT 1X8Al, 31H, ALTVERNATE LDGIC POUTE T
1AKEN. /7]
ENP

177

45

4¢

50
51

52

48

54
56

57

50

70

5

8C

1 IMAX.JNAX,

LISTING OF FUNCTION ILOC PAGE

FUNCTION ILOC(XP}

IMPLICIT REAL#8 (A~Hs 0-Z),
LOGICAL *1 S1 /aTRUE./
COMMON /CAP/ X(50CHs Y{2C0)s CU5001, HI200},
IMAX1, JMAX1, ISAT, JSAT,IIN, 10,
LCGICAL*1 ROTINV

COMMON /CILGBC/ XVMAT. YVMAT, IMAT(5001, JMATI500)
IF (XP «LTa XUIMAX1)) GO TOQ 45

I= IMAX]

Ga 10 52

IF (XP 4GE, X(3}1 GC TO 46

1= 2
GO TO 52

I= (XP= X{(1}) #XVMAT +1. (00001

I= IMATI(I)
GG TO S1

1= 1-1

IF (XP LT, X{I)} GC YO 50

IF (XP LT, X{I+1)) GO TC 52

=1 +1

GO TO 51

Ieec= 1
RETURN

ENTRY JLOC(YQ)

IF (YO «LYe Qo) S1= «FALSE.

YP=CABS{YC)
IF (YP oL Ts
= JMAX1
6C 10 57

I= YP *YVMAT +1,000C01
I= JMATUIL}
GO TO 5¢

I= I-1

IF (YP o417,
IF (YP ot T.
I= I+1

GC TC 5¢€

IF (S1) GC YO 52
ILOC= 2-1

S1= «TRUF,

JLoc= 1L0C
RETURN

END

INTEGER*4 (I-N)

BETA,
1PU,

POTSAT,
ROTINV

Y{JMAX1)) GO TC 4€

YUI}IGO TC 54
Y{1 +1}) GO YO 57

LISTING OF SUBRCUTINE CRBIT PAGE
SUBRCUTINE ORBIT(#)
IMPLICIY REAL*8 (A-Fy 0O-2Z)}, INTEGER*4 {[-N)
CCMMCN /CCMORB/ XCy» YCo VXCs VYC, FX, FY, XC, HX, HY, T, FACE

INTEGER*4 FACE

INTEGER*4 FRR

ERR= O

X1= XC~ FX¥,5

TF (VYC oLEe Os} CALL ERROR (£80, BHORBIT 50}
R= VXC/ VYG

D= X1- X0

IF ( R +LTe D/ KY) GO TO 60

IF {R 6T, (D+ FX}/ HY) GO TO 7C
CALL TIM(HY, vYC, FY, £75}

FACE= 2

YF= HY+ YQ

ERR= ERR+ 1

IF(ERR, GE. 2) CALL ERRCR {EBC, RHORBIT 53}
XF= (FX *T ¥,5 +VX0} *T +X0
IF (XFo LT, X13 GC T 60

IF {XFas GTs X1+HX) GO TC 72

VX0= FX =7 +VXC

VYC=s FY *7 +VYC

X0= XF

YC= YF

RETURN

CALL TIM (X1 =XC. VXC, FX, ESC)
FACE= 1

XF= X1

YF=(FY *T %,5 +VYC) *T +vQ
IF (YFe GTe YO+ HY) GC TC 59

IF (YFe LTa YC)} GC TQ 75

GO TO S%

CALL TIMIX1#+ HX- XC,
FACE= 3

XF= X1+ HX

GO TO &5

T= -24% VYC/ FY
FACE= C

YF= YC

60 To 52

RETURN 1

END

VX0, FXy 859}

15



1c

12

14

71

67

62

64

LISTING OF SUBROUTINE RHO PAGE

SUBROUTINE RHO(*)

IMPLICIT REAL®E (A-Hy O-2), INTEGER*4 (I~N)

17

POL{Xe X0+ X1» YO, Y1) = (YO *(X1 =-X) -¥1 *{X0-X}}/(X1 -X0)
POD2{Xs X0s Xlo X2+ YO0, Yl, Y2) = YOk ({2. *X) -X2 ~X1} /(X0 ~X2)
1 Z{%0 ~X1} =Yl *{(2. *X) ~X2 -X0) /(X1 =-X2} /{XO-X1} + Y2 *({(2,

2 *X} =X1 -X0) /(X1 ~X2) /7{X0- X2)

GO 10 1

ENTRY CRHO {U, RHOI+ CX, DY, LXy LY)

OIMENSION U(LXs LY}y RHOIC(LXy LY}s OX(LXy LY}, DY{LXy LY}
LOGICAL*1 Sl S2, S3+ S4+ 55+ WRTRAJ, CORR, REDO, TRPL1

INTEGER EXITes RTR, IBAC

DIMENSIGN YMA2{%00), VTE¥(500), VEND(2)

COMMON /CAP/ X(500), Y{200), G(500), H(200), BETA, POTSAT,

1 IMAX,JMAX, IMAX1l, JUMAX1ls ISAT, JSAT,I1IN, 10, IPU, ROTINV
LCGICAL*1 ROTINV

COMMON /COMCRB/ XN, YNs VXNs VYN, FX, FY, COX, Gl, Hl, Ty EXIT
COMMON /CRHO/ DTR{10). TR{10)¢ VXITEM{20), CURR, UNCURR, WC,
1 VZINM, DYTRPL.» DRAG(2), UNDRAG(2),
2 NCROSS+ NTRAJ, NPTRAY,
2 NGTRPL, WRFLOW, ACCTRA, TRPLOT
LCGICAL®*]1 WRFLCW, ACCTRA, TRPLCT

COMMCN /CPLTRA/ XTi, XT2, XTDEL, YTy YT2,
REAL*B PI/3.14185/
RETURN

DO 4 I= 1, IMAX

00 & J= 1, JMAX
RHOT(I+ J}= J.

Cx{ls J}= Co

DY{I,+ J)= Ca

DC 10 I= 2, IMAX1

D0 10 J= 2, JMAX]
DX(1, J}= POD2{X{I).
1 U(I+1,J))

DY(Is J)= POD2(Y(J), Y(J~1)s Y(JIy Y(J+1Dy ULI, J=1)s ULTI4J1,
1 UlTeJ+1))

I= ISAT

00 12 J= 2, JSAY .
BX{1+d)=PCO2{X{T)y X{I)s XUL+1), X{(I42}, ULT, J)y ULI+1, J},
1 ufr+2, 41

BY{I.J)= Q.

J= JSAT

OY(i. Ji= PCD2{YLJL,
1 Utlwa+2h)

DO 14 I= 2, IMAX1

DO 14 Jd= 2, JMAX]
DX(I, J)= -DX{I, J) /BET2
OY(l, J)= =CY(I. J} /BETA
Do 6 I= 2., IMAX]

Cx{I. 1)= DXtI, 2}

DY{I. 1)= =DY(I» 2}
MCELL= €& *IMAX

JS2= JMAX1 +JMAX

CURR= C.

ORAGI1ll= C,

DRAG(2)= C.

NCROSS= ¢

NTSKIP, NGRP,

YTDEL, YMAL{500),

X(I=1)y X{I}s XCI41}y UCTI=1,J0y UlIsJ},

YEdbe YUJ+1)y YIJ42)y UlTod)s ULy JH1},

LISTING OF SURRCUTINE RHO PAGE

VINM= C.

CCRR= #FALSE.

IF (WC oNEe Oa +OReACCTRA} CORR= oTRUES
DU €1 K= 1, ANGRP

IF(TRPLCT oANDCs NGTRPL &CEs
S1= oFALSF.

«FALSE.

« TRUE.

K} CALL PLTRAL

S4=
Ick= 1

MAX= IMAX1

YN= oS5 *Y(JMAX)

YYRPL= YN

DO 59 NTRAJ= 1.

Xh= X{IMAX)

VXN= —UXTTEMIK?}

VYN= (o

VIN= Ceo

I= ImMax

J= JLCC(YND

ExiT= 1

RTR= C

TRPL1= 4FALSE.
IE (YN oGTe YTRPL) GO TO 71

YTRPL= YN -CYTRPL

IF (TRPLOT 4ANCa NGTRPL

WRTRAJ= LFALSE.

IF («nNOTse WRFLCW) GC T9 €7

IF (MOD(NTRAJ-1, NPTRAJ)} oEQe. NPTRAJY-1)
S3= LFALSE.

RELC= oFALSE.

TF (CCRRk)} REDC= 4 TRUE.

C) 4C ICEt= 1, MCELL

IF (.NCT. CCRR) GC 11 65

KEDO= «NCT. RECOG

IF {RELCC «ANCe o+NCT. ACCTRA}

RTR= MCCUEXIT #RTR +2, &)

IF {RTR «NEse 2) GC TN 62

FX= PCLOYN, Y(J}, Y(J+1}, OXCT,
Fy= POLUYN, Y{J), Y{J411}, DY(I,
IF(RECCH CU TC 75

YMALII)= YN

VTEM(T)= VXN

IF (S2)} YMAL(IY =
I= I-1

GO YO €8

IF (RTR JNE.
Fx= PO1(XN,
Fy= POLUXN,
TFIRECC) GO
= J-1

GO TO €€
IF{RTR «NEs
= J+l

FX= PGL{XN, X(1}, X{I+1},
Ey= PCLI{XN, X{I}, X(I41},
If {«NCTe REDO) GO TO 68
d= J-1

+a C5%Y {JMAXL)

500

«GEe K} TRPL1= oTRUE,

WRTRAJ= , TRUE.

GC TC 75

DX(1,
DYtl,

J+1))
J+1y)

Jhy
Jhe

—YMAL(T}

2} GO TQ 64
X(I)y XUI+1),
X(E)e X141},
TC 75

OX(1,
DY(1,

Jle
Jd1s

DX({I+1l,4})
DY{I+1,4))

0) CALL ERRCR (&2Cl, BHRHO 64}

DXCI, J)y DXUI+1401)
OY(I+ J}y DY(I%1,44})

111

18

178

15

7€

77

68

€3

66

1C

4C

51

72
5¢C

73

11

17 -

15

13
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GO TO 75

XN= XN1

YN= YN1

VXN= VXAl

VYN= VYN]

RTR= IRTR

IF{ACCTRA} GO TO 76

Fx= FX1

Fy= FY1

Gg 1a 77

FX= (FX1 +FX} #,5

FY= (FY1l +FY} *.5

IF (WC 4EQes 0a) GO TO 66
WCT2=(WC*T) **2

FY= (FY +VIN *WC) *{1l. -WCT2 /12.)

Fy2= FY
VYN= VYK *(ls -4CT2/6.)
GO TO &é
IF (I oLEe 1} GO TO 50

IF {1 «EQaISAT~1,ANCs YN oLT. Y{JSATI} GO 7O 13

IF(J .EQ. J¥AX) GO TO 51
IF (J .NEe C} GO TO 63
YN= -YN

VYN= -VYN

RTR= ©

J= 2

$3= oNOT. $3

IF (JNCT. CORR) GO TO 66
XN1= XN

YN1= YN

VXN1= VXN

VYNI= VYN

FXl= FX

FYl= FY

[RTR= RTR

€1= (1)

Hl= H{J)

COX= (X{I} +X(I+1}) /2.

COY= (Y(J} +Y{J+1}) /2,

I1BAC= MCD (4-RTR, 4)

IF (IBAC .EQe 0) GC TO 7C
CALL RETATE (XN, YN, IBAC)
CALL RCTATE (VIN, VYN, [BAL)
CALL RCTATE (Fx, FY, IBAC}
CaLt RCTATE (COx. COY, IBACH
CALL RCTATE {(G1, Hl, IBAC)
G1=CABS(G1)
H1=DABS{H1)

CALL CRBIT (&815)
CALL RCOTATE(XN, YN,
CALL ROTVATE(VXN, VYN,

RTR)
RTR)

19

IF (WC +ECs Os oORe oNOT. REDC) GC TO 40
HCT= WC *7T
WCT *WCT
~VYNL *(le ~WCT2/64} *WCT #VIN *(le ~WCT2/24)-FY2 =T *W(T/2,
VINM= DMAX1{(VZNM,CABS(VIN))
CCNTINUE

LISTING OF SUBRCUTINE RHO PAGE

CALL ERROR(E2C1,
1= I

on 72 1= 2, 11
VIEM(I)= VTEM(I1+1)
YMAL{T)= POLOXET), X{Il+1l),
GO TO 5C

IF (WRTRAJ) WRITE (10410C) (X{I},YMALII},
1 NTSKIP}

VENC{l)= VIEM(Z)

VEND(2)= VEND(1}

IF {(«NCTe TRPLY) GC YC 72

I11= 2

CALL PLTRAZ

IF («NOT. S4) GC TO 9

S54= LFALSE.

oo 8 1= 2, IMAX

IF (YMAL(I) LT,
YMA2(I)= YMAL(T)
60 TO 1S

D0 11 1= 2,
IF {YMAL{D)
CONTINUE

GC YO 18
NCROSS= NCROSS +1

TRH= YMA2( IMAX) -YMAL(IMAX)

DO 36 Il= 2, MAX

I= IMAX =11 +1

Al= YMA2(IL} -YMAL(T}

Yé= DMINL{YMAL(I), YMA2(T})

Y5=DMAX1 (YMAL(I}, YMA2(I})

JS1l= JLCC{Y4} +1 +JMAX

00 31 Js= JS1, Js2

J= 4S5 -JMAX

IF {J «GTe 1} GC TO 28

J= 3=y

Y3i= =v{J)

60 7O 2§

¥3= Y(.)

IF (Y3 46T« Y5) GC TO 35

TEM=DABS(TRH /AL *VTEM{ INAX) /JVTEM(I))

BHRHO 40)

X{T1+42}, YMALUT1+41), YMAL(I1+2})

VTEMUI)y I= 24 IMAX,

Y{JMAXL)} CALL ERROR(£8, BHRHC 81

IMAXY
+GEe YMA2(I)) GQ TC 17

22

IF (ROTINV) TEM=DABS (TEN *{YNMA2(IMAX) -TRH/ AL *{YMA2{(1) -Y¥3))
1 ./Y3)

RROI{I, J)= RECI(I, J) +TEWM

YMAZ(L) = YMALLI)

CCONTINUE

DC 41 L=1,2

TORAG= TRH* (VEND{L) ~VTEN{INAX))

IF(ROTINV) TDRAG= TCRAG *{TRH + 2. *YMAL({IMAX})

DRAG(L)}= TCRAG + DRAG(L}

YMAZ (IMAX)= YMAL(IMAX}

GC TO 16

IF (WRTRAJ} WRITE (IG,10C) (X(I}, YMAL(I)y VTEM{I), I= ISAT, IMAX,
1 NTSKIP)

VENC(1)= -VTENM{ISAT)

VEND{2}= 0.

IF {«NCTe TRPL1) GO TC 74

[11= ISAT



42

19

2¢

21

5%

1Y)
61

8%

43

58

2C1
1C0

12

14
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CALL PLTRA2
IF {S1) GO TO 15

CUR = POLLY(JSAT), YMAL{ISAT), YMA2{ISAT), YMAL(IMAX}, YMA2(IMAX))

1 /7YUJSATY
I1F (RCTINV) CUR =
CURR= CURR +CUR

CUR  *CUR

PAGE 21

TRHEL= POL{ Y(JSAT), YMAL{ISAT), YMA2(ISAT), TRHs Qs)

00 42 L= 1.2
TDRAG= TRHEL *{VTEM{2} -VENDIL)

)
IF (ROTINV) TORAG= TDRAG *{2. *YMA2(IMAX} =TRHEL)

DRAG(L)= TDRAG +DRAG(L}

S1= .TRUE.
MAX= TMAX -IS5AT
GO TO 1€

IF {S2)} GO TO 40

YN= YMAI(IMAX) -DTR{ICH)
IF (YN +GTe 0.) GO TO 21
§2= «TRUE.

D0 20 Il= 1, MAX

I= IMAX -1 +1

YMAL{I)= Q.

VEND{1)= DSQRT (VTEM(IMAX) *VTEM{IMAX) -2, *POTSAT /BETA }
VEND{2}= Qe

68 T0 15

IF (YN +6T. TR{ICH))} GO TO 55

YN= TROICH)

ICH= ICH +1

CONTINUE

CALL ERROR(£201, B8HRHOD 591

IF (TRPLOT JANC. NGTRPL 4GEe K} CALL PLTRA3
CONTINUE

GRP=CFLCAT(NGRP)

VAVE = 0

bo 89 K = 1, NGRP

VAVE = VXITEM (K) + VAVE

UNCURR = CURR%XVAVE * Y(JSAT)I*2,/GRP
IF (RCTINV} UNCURR =
00 43 L= 1,2
UNDRAG{L)= BETA *VAVE /GRP *DRAG{L) *2.
IF (ROTINV) UNDRAG{LI= UNDRAGIL) *PI /2.
DRAG(L)= CTRAG(L) IY{JSAT) fVAVE *GRP

IF {RCTINV) CRAG(L) =CRAG{L) /Y(JSAT)
be 58 I= 2, IMAX]1
DO 58 J= 2, JMAX]
REOI(Iy Ji= REGQGI(I. J) /GRP
RETURN
RETURN 1
FORMAT { /4{6X 1HX SX 1HY 6X 1OHX-VELOCITY
1 Fll.64 1PE1Z2e411
END

LISTING OF SUBRCUTINE RCTATE

SUBROUTINE RCTATE {(L.Ve1)
IMPLICIT REAL*8 (A-H, 0-1),
x=U

v=y

IF (Te NEeo

INTEGER*4 {[-N)

1) GO TG 1

TFL1. 2) 6C TC 2
X= =X

Y= -Y

GC 10 1C

IF (I. NEs 3)GC TO 12
TEM= Y
Y= X

X= ~TEM
U= X
V=Y
RETURN
If (1.
CALL ERROR
RETURN

END

NEe

£EQe Q)
{El4,

RETLRN
8HROTAT 121

UNCLRR * Y{JSAT) * PI/2,

) 1 414X OPF6e2y

PAGE

22

179

201

20

4C

LISTING OF SETUP PROGRAM

SETUP PROGRAM

IMPLICIT REAL#*8 (A-Fy O-1),
COMMEN" /CMAIN/ A(20COC)
LCGICAL*1 PAGE(120, 57)

tx= 8C

Ly= 5C

LXY= LX *LY

CALL DREAD (A{1l), A{LXY 41},
CALL DWRITE (ACl), LXy LY)
CALL READ

CALL
CALL
CALL
caLL

INTEGER*%4 (I-N)

DRHO  (A{1)y ALLXY +1),
CACIH{ACLY, ALLXY +#1)y A(3 #LXY +1)y LXy LY}
CACIVIACLY, ACLXY #1)y A(3 *LXY 41}, LX, LY)
CALL DCONT( All}y LXs LY+ PAGE(L,
CALL PCCO

60 10 1

CALL EXIT

END

LISTING OF SUBRCUTINE TIM

SUBROUTINE TIM(CIF, VEL, FCRCE, * )

IMPLICIT PEAL*8 (A-H, O-2}, INTEGER%4 {1-N)
CCMMON /CCMORB/ XCs YCy VX0, VYO, FX, FY, XC,
INTEGER*4 FACE

REAL¥8 VMIN /1.D~€/» RATNX /,CEDC/y FMIN /1.D-6/
IF(DARS{VEL).LT. VMIN} GC TO 20

RAT= FCRCE* DIF/ VEL/ VEL

IF(DARS(RAT). GT. RATMX) GC TC 20

TIME= DIF/ VEL® ({RAT= 1l.}¥ .5+ RAT+ 1,}

IF ¢ TIME 4LTe 0,) GO TO 20

RETURN

IF(DABS{FORCE)4LEa FMIN) GG TC 40

TEM= VEL# VEL +FCRCE* DIF *2,

IF (TE¥ o4LT. Ou) PETURN 1

SOR=DSQRT{TEM)

HX,

Tl = ( -VEL + SQR) /FORCE
T2 = ( -VEL - SQR} /FDRCE
TIME= CMIN]1 (T1l,s T2)

IF {TIME ,GEe (a) RETURN
TIME= DNMAX] (T1, T2)

IF (TIME oGE, 3.} RETURN
RETURN 1

TiME= DIF/ VEL

RETURN

END

A(2 *LXY +1), A{3* LXY +1},

DPOCO {A{1}, ALLXY 1), Al2 *LXY +1}, A{3% LXY +1),
A(3 *LXY +1), Al4%x LXY +1),

HY

1}s 120, 57)

LX,y
LX,

PAGE

PAGE

TIME,

FACE

23

LXy LY}

Lyl
LY)

24



LISTING OF SUBROUTINE TRILIN PAGE 25

SUBRODUTINE TRILIN
IMPLICIT REAL*E (A-ty 0O-Z), INTEGER*4 {I-N)
REAL*8 K
DIMENSION W(ld, Z(1)
EQUIVALENCE (CU1}, w(l)}, (K(1l)}y Z(1})
COMMON /CTRI/ A(500Q), B(5QQH, C{500)s K(500}s NMIN, NMAX
M= NMIN
N= NMAX
WiMi= C{M} /B(M)
Z(M)= KM} /B(M)
Ml= M 4]
Nl= N -1
GO 10 J= M1, A}
TEM= B(J} ~ALJ) *uwlJ -1)
WiJ)= ClJ) JTEM
1c Z6JY= (K{JY ~ALy) *2(4 ~1)}) /TEM
ZAN}= (K{N) —AIN) *Z(N -1}) Z(B(N) =A(N) *W(N ~1))
DO 20 J= M1, N

I= N =J +¥
2¢ ZOIY= ZUI) =wlI) *2{] +1)
RETURN
END
LISTING NF SAVMPLE DATA PACKET FCR MODEL PRCBLEM PAGE 24

SAMPLE CATA PACKET FOR MCDEL FRCBLEM
&INPUT
IMAX= NT7&, ISAT= 256y GUll= 45#.5, 204,25, 19%,75, XLEFT=-25,,
JMAX=31, JSAT=CE,HILll= .4, 14%,2, $*,4, 20%,75,
CTRULY= 454y 4249 o08s o1&y TR{1}= 4,81y Z4BLly o%8+y Cafy
NPMAJ=6, NWSKIP=3., MPASS=6¢
CMEGA= 1455 RCTINV=F,
ERRADI{I)= 42, «CBe¢ 4%.C5, 12%,02, MITER= 19,
ERMPAR=,0C1+ERVPAU= +00CL.RHISTA= (482, MINITE= 11,
BLPHAR= 1.+ 10%,75, ALPHAU= les 16%475, RHIMAX{1)=20%5., UMAX= 5,,
VXST=,0571C, POTSAT= ~CeCs RHIX= =124, BETA=073444,
XPl= -2Ces XP2= Sas XPDEL= +2%.
¥Pl1 fas YP2=1Ces YPCFL= 428,
AUG= 26, UGI27= Sev s2¢r o259 =aDlr =005s =41y —e2s =2ty =aby ~ley
~2ev =304 —day —6ay ~Bey ~10sy —124s —lb4er =164y ~18ay -20sy -2249
—24esy =26as =284+ =2Cay
PLCTUCEY= T,

NRG= 15, RCIL1)= ~las =els als 255+ o65¢ o751 o485y 435y «59, 105
1e10s 141010 1029 142014 3as
PLCTR{E)I= To

XT1= ~20as XT2= Sa4 XTCEL= 428,

¥T1= =1Cas YT2=1Cas YTCEL= ods
FLCTTR(E)= T, CYTRPL= les NGTRPL=1,
&END
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